Python Forum
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Error in Matrix operation
#1
from sympy import *
from time import time
from mpmath import radians
from math import *
import tf

'''
Format of test case is [ [[EE position],[EE orientation as quaternions]],[WC location],[joint angles]]
You can generate additional test cases by setting up your kuka project and running $ roslaunch kuka_arm forward_kinematics.launch
From here you can adjust the joint angles to find thetas, use the gripper to extract positions and orientation (in quaternion xyzw) and lastly use link 5
to find the position of the wrist center. These newly generated test cases can be added to the test_cases dictionary.
'''

test_cases = {1:[[[2.16135,-1.42635,1.55109],
[0.708611,0.186356,-0.157931,0.661967]],
[1.89451,-1.44302,1.69366],
[-0.65,0.45,-0.36,0.95,0.79,0.49]],
2:[[[-0.56754,0.93663,3.0038],
[0.62073, 0.48318,0.38759,0.480629]],
[-0.638,0.64198,2.9988],
[-0.79,-0.11,-2.33,1.94,1.14,-3.68]],
3:[[[-1.3863,0.02074,0.90986],
[0.01735,-0.2179,0.9025,0.371016]],
[-1.1669,-0.17989,0.85137],
[-2.99,-0.12,0.94,4.06,1.29,-4.12]],
4:,
5:}


def test_code(test_case):
## Set up code
## Do not modify!
x = 0
class Position:
def __init__(self,EE_pos):
self.x = EE_pos[0]
self.y = EE_pos[1]
self.z = EE_pos[2]
class Orientation:
def __init__(self,EE_ori):
self.x = EE_ori[0]
self.y = EE_ori[1]
self.z = EE_ori[2]
self.w = EE_ori[3]

position = Position(test_case[0][0])
orientation = Orientation(test_case[0][1])

class Combine:
def __init__(self,position,orientation):
self.position = position
self.orientation = orientation

comb = Combine(position,orientation)

class Pose:
def __init__(self,comb):
self.poses = [comb]

req = Pose(comb)
start_time = time()

########################################################################################
##

## Insert IK code here!

# FK/IK Code begins

d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8') # Link Offset
a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7') # Link Lengths
alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols('alpha0:7') # Twist angles
q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8') # joint angle

DH_Table = { alpha0: 0, a0: 0, d1: 0.75, q1: q1,
alpha1: -pi/2., a1: 0.35, d2: 0, q2: -pi/2. + q2,
alpha2: 0, a2: 1.25, d1: 0, q3: q3,
alpha3: -pi/2., a3: -0.054, d1: 1.5, q4: q4,
alpha4: pi/2., a4: 0, d1: 0, q5: q5,
alpha5: -pi/2., a5: 0, d1: 0, q6: q6,
alpha6: 0, a6: 0, d1: 0.303, q7: 0 }

def TF_Matrix(alpha, a, d, q):
TF = Matrix([[ cos(q), -sin(q), 0, a],
[sin(q)*cos(alpha), cos(q)*cos(alpha), -sin(alpha), -sin(alpha)*d],
[sin(q)*sin(alpha), cos(q)*sin(alpha), cos(alpha), cos(alpha)*d],
[ 0, 0, 0, 1]])
return TF

T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(DH_Table)
T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(DH_Table)
T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(DH_Table)
T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(DH_Table)
T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(DH_Table)
T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(DH_Table)
T6_EE = TF_Matrix(alpha6, a6, d7, q7).subs(DH_Table)

T0_EE = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_EE

px = req.poses[x].position.x
py = req.poses[x].position.y
pz = req.poses[x].position.z

(roll, pitch, yaw) = tf.transformations.euler_from_quaternion(
[req.poses[x].orientation.x, req.poses[x].orientation.y,
req.poses[x].orientation.z, req.poses[x].orientation.w])

r, p, y = symbols('r p y')

ROT_x = Matrix([[1, 0, 0],
[0, cos®, -sin®],
[0, sin®, cos®]])

ROT_y = Matrix([[ cos(p), 0, sin(p)],
[ 0, 1, 0],
[-sin(p), 0, cos(p)]])

ROT_z = Matrix([[cos(y), -sin(y), 0],
[sin(y), cos(y), 0],
[ 0, 0, 1]])

ROT_EE = ROT_z * ROT_y * ROT_x

Rot_Error = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))

ROT_EE = ROT_EE * Rot_Error
ROT_EE = ROT_EE.subs({'r':roll, 'p': pitch, 'y': yaw})

EE = Matrix([[px],
[py],
[pz]])
WC = EE - (0.303) * ROT_EE[:,2]

theta1 = atan2(WC[1], WC[0])
side_a = 1.501
side_b = sqrt(pow((sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35), 2) + pow((WC[2] - 0.75), 2))
side_c = 1.25

angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a)/(2 * side_b * side_c))
angle_b = acos((side_a * side_a + side_c * side_c - side_b * side_b)/(2 * side_a * side_c))
angle_c = acos((side_a * side_a * + side_b * side_b - side_c * side_c)/(2 * side_a * side_b))

theta2 = pi/2 - angle_a - atan2(WC[2] - 0.75, sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35)
theta3 = pi/2 - (angle_b + 0.036)

R0_3 = T0_1[0:3, 0:3] * T1_2[0:3, 0:3] * T2_3[0:3, 0:3]
R0_3 = R0_3.evalf(subs={q1:theta1, q2:theta2, q3:theta3})
R3_6 = R0_3.inv("LU") * ROT_EE

theta4 = atan2(R3_6[2,2], -R3_6[0,2])
theta5 = atan2(sqrt(R3_6[0,2] * R3_6[0,2] + R3_6[2,2] * R3_6[2,2]), R3_6[1,2])
theta6 = atan2(-R3_6[1,1], R3_6[1,0])

# FK/IK Code Ends

# theta1 = 0
# theta2 = 0
# theta3 = 0
# theta4 = 0
# theta5 = 0
# theta6 = 0

##
########################################################################################

########################################################################################
## For additional debugging add your forward kinematics here. Use your previously calculated thetas
## as the input and output the position of your end effector as your_ee = [x,y,z]

## (OPTIONAL) YOUR CODE HERE!
FK = T0_EE.evalf(subs={q1: theta1, q2: theta2, q3: theta3, q4: theta4, q5: theta5, q6: theta6})

## End your code input for forward kinematics here!
########################################################################################

## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
# your_wc = [1,1,1] # <--- Load your calculated WC values in this array
# your_ee = [1,1,1] # <--- Load your calculated end effector value from your forward kinematics
your_wc = [WC[0],WC[1],WC[2]]
your_ee = [FK[0,3],FK[1,3],FK[2,3]]
########################################################################################

## Error analysis
print ("\nTotal run time to calculate joint angles from pose is %04.4f seconds" % (time()-start_time))

# Find WC error
if not(sum(your_wc)==3):
wc_x_e = abs(your_wc[0]-test_case[1][0])
wc_y_e = abs(your_wc[1]-test_case[1][1])
wc_z_e = abs(your_wc[2]-test_case[1][2])
wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
print ("\nWrist error for x position is: %04.8f" % wc_x_e)
print ("Wrist error for y position is: %04.8f" % wc_y_e)
print ("Wrist error for z position is: %04.8f" % wc_z_e)
print ("Overall wrist offset is: %04.8f units" % wc_offset)

# Find theta errors
t_1_e = abs(theta1-test_case[2][0])
t_2_e = abs(theta2-test_case[2][1])
t_3_e = abs(theta3-test_case[2][2])
t_4_e = abs(theta4-test_case[2][3])
t_5_e = abs(theta5-test_case[2][4])
t_6_e = abs(theta6-test_case[2][5])
print ("\nTheta 1 error is: %04.8f" % t_1_e)
print ("Theta 2 error is: %04.8f" % t_2_e)
print ("Theta 3 error is: %04.8f" % t_3_e)
print ("Theta 4 error is: %04.8f" % t_4_e)
print ("Theta 5 error is: %04.8f" % t_5_e)
print ("Theta 6 error is: %04.8f" % t_6_e)
print ("\n**These theta errors may not be a correct representation of your code, due to the fact \
\nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
\nconfirm whether your code is working or not**")
print (" ")

# Find FK EE error
if not(sum(your_ee)==3):
ee_x_e = abs(your_ee[0]-test_case[0][0][0])
ee_y_e = abs(your_ee[1]-test_case[0][0][1])
ee_z_e = abs(your_ee[2]-test_case[0][0][2])
ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
# ee_x_e = math.fabs(ee_x_e)
# print ("\nEnd effector error for x position is: %04.8f" % ee_x_e)
# print ("End effector error for y position is: %04.8f" % ee_y_e)
# print ("End effector error for z position is: %04.8f" % ee_z_e)
# print ("Overall end effector offset is: %04.8f units \n" % ee_offset)

print ("\nEnd effector error for x position is: %r" % ee_x_e)
print ("End effector error for y position is: %r" % ee_y_e)
print ("End effector error for z position is: %r" % ee_z_e)
print ("Overall end effector offset is: %r units \n" % ee_offset)

if __name__ == "__main__":
# Change test case number for different scenarios
test_case_number = 1

test_code(test_cases[test_case_number])


Error:
Traceback (most recent call last):
File "IK_debug.py", line 236, in <module>
test_code(test_cases[test_case_number])
File "IK_debug.py", line 90, in test_code
T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(DH_Table)
File "IK_debug.py", line 84, in TF_Matrix
TF = Matrix([[ cos(q), -sin(q), 0, a],
File "/home/robond/.local/lib/python2.7/site-packages/sympy/core/expr.py", line 226, in __float__
raise TypeError("can't convert expression to floa
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Check if two matrix are equal and of not add the matrix to the list quest 3 825 Jul-10-2023, 02:41 AM
Last Post: deanhystad
  Numpy error while filling up matrix with Characters august 4 1,857 Apr-13-2022, 10:28 PM
Last Post: august
  How to multiply a matrix with herself, until the zero matrix results peanutbutterandjelly 3 3,370 May-03-2021, 06:30 AM
Last Post: Gribouillis
  List operation error Hermann_Fegelein 3 2,758 Aug-13-2018, 05:26 PM
Last Post: Hermann_Fegelein
  matrix from matrix python numpy array shei7141 1 3,708 Jan-16-2017, 06:10 PM
Last Post: micseydel

Forum Jump:

User Panel Messages

Announcements
Announcement #1 8/1/2020
Announcement #2 8/2/2020
Announcement #3 8/6/2020