Bottom Page

Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
 [neural netrowks]How do i resume training once i have saved the model
#1
I have a model that I've trained for 75 epochs. saved the model with model.save(). The code for training is

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, load_model
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K


# dimensions of our images.
img_width, img_height = 320, 240

train_data_dir = 'dataset/Training_set'
validation_data_dir = 'dataset/Test_set'
nb_train_samples = 4000  #total
nb_validation_samples = 1000  # total
epochs = 25
batch_size = 10

if K.image_data_format() == 'channels_first':
    input_shape = (3, img_width, img_height)
else:
    input_shape = (img_width, img_height, 3)

model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')

model.fit_generator(
    train_generator,
    steps_per_epoch=nb_train_samples // batch_size,
    epochs=epochs,
    validation_data=validation_generator,
    validation_steps=5)

model.save('model1.h5')
How do i restart training ? just run this code again ? or do i need to make some changes ? and what are those changes?
Quote
#2
You'll need to load the model with model.load('model1.h5') and then call fit_generator again.
Quote

Top Page

Possibly Related Threads...
Thread Author Replies Views Last Post
  stacked autoencoder training JohnMarie 0 507 Feb-24-2019, 12:23 AM
Last Post: JohnMarie
  How to use a tfrecord file for training an autoencoder JohnMarie 6 1,085 Feb-22-2019, 06:35 PM
Last Post: JohnMarie

Forum Jump:


Users browsing this thread: 2 Guest(s)