Feb-12-2020, 03:53 PM
Hi,
I have data as below:
Out[15]:
array([[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan]])
I want to convert to dataframe. and name the rows and columns as:
I have data as below:
name category date score Z s1 2020-02-12 A s1 2020-02-12 B s2 2020-01-23 U s1 2020-02-06 A s2 2020-01-26 B s3 2020-02-10I want to define a table based on unique names(as rows) & unique category as column names. I sue below code, I could not be able to name the rows and columns.
import pandas as pd df = pd.read_csv(r'D:\PythonCodes\tmpdata.txt', delimiter= '\s+', index_col=False) df['category'].value_counts() df2=df.groupby(['name','date','category']).agg({'score': lambda x: x.mean() * 100.0}) df2.to_csv('out.csv',index=True) myrws=sorted(list(df.name.unique())) mycols=sorted(list(df.category.unique())) lenrows=len(myrws) for i in range (len(myrws)): tmp=myrws[i] print(tmp) import numpy as np d = np.zeros((len(myrws),len(mycols))) d[:] = np.nanI am getting the output :
Out[15]:
array([[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan],
[nan, nan, nan]])
I want to convert to dataframe. and name the rows and columns as:
Name s1 s2 s3 A nan nan nan B nan nan nan U nan nan nan Z nan nan nan