Mar-14-2020, 12:29 PM
Hi Guys,
Using Ubuntu 18.04 OS.
Pycharm Editor,
i used a youtube video to build a Linear Regression, i dont know is it possible to put the link here or it will be not possible.,
but everything is cool and works fine , only small thing not working as it is.
in loop section it suppose to find best accuracy and save the Model.
but when i print the accuracy every time i see it has only one value,i think there is an issue with it. but cant figure what is it.
and here is output and my Code:
Using Ubuntu 18.04 OS.
Pycharm Editor,
i used a youtube video to build a Linear Regression, i dont know is it possible to put the link here or it will be not possible.,
but everything is cool and works fine , only small thing not working as it is.
in loop section it suppose to find best accuracy and save the Model.
but when i print the accuracy every time i see it has only one value,i think there is an issue with it. but cant figure what is it.
and here is output and my Code:
# Numpy Library import numpy as np # Pandas Library import pandas as pd # Split The Data For Testing and Training. from sklearn.model_selection import train_test_split # For Fitting and Predicting The Data. from sklearn.linear_model import LinearRegression # Visualization of The Model. import matplotlib.pyplot as plt import pickle from matplotlib import style from sklearn.preprocessing import PolynomialFeatures from sklearn.metrics import r2_score student_data_path = '/home/ahmdwd/Documents/WrkCrt/Prjcts/000 Others/student/student-mat.csv' student_data = pd.read_csv(student_data_path, sep=';') # print(student_data.head()) # print('---------------------') student_data = student_data[['G1', 'G2', 'G3', 'studytime', 'failures', 'absences']] # print(student_data.head()) predict = 'G3' X = np.array(student_data.drop([predict], 1)) y = np.array(student_data[predict]) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # ### For Getting Best Accuracy and Save The Model With it. best = 0 for _ in range(30): linear = LinearRegression() linear.fit(X_train, y_train) accur = linear.score(X_test, y_test) print(f'Accuracy Inside The Loop {accur}') print('-------------') if accur > best: best = accur with open('Student Model.pickle', 'wb') as f: pickle.dump(linear, f) amw_linear = open('Student Model.pickle', 'rb') linear_pickl = pickle.load(amw_linear) print(f' Linear Coef_ :: {linear_pickl.coef_}') print('-------------') print(f'Linear Intercept :: {linear_pickl.intercept_}') predictions = linear_pickl.predict(X_test) for X in range(len(predictions)): print(f'Prediction : {predictions[X]} --- X_test : {X_test[X]} ---- y_test : {y_test[X]}')
Output:Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Accuracy Inside The Loop 0.8886248365020478
-------------
Linear Coef_ :: [ 0.14457413 0.99651608 -0.25816271 -0.17672835 0.03641823]
-------------
Linear Intercept :: -1.4681428588641054
Prediction : 13.037088384513288 --- X_test : [15 13 3 2 14] ---- y_test : 13
Prediction : 12.996406154864992 --- X_test : [14 13 3 1 12] ---- y_test : 13
Prediction : 5.264809788665662 --- X_test : [7 6 1 0 0] ---- y_test : 0
Prediction : 3.946991233054696 --- X_test : [6 5 1 1 0] ---- y_test : 0
Prediction : 9.351460954989257 --- X_test : [ 9 10 3 0 9] ---- y_test : 9
Prediction : 14.58457382270452 --- X_test : [13 15 3 0 0] ---- y_test : 15
Prediction : 10.495786294728287 --- X_test : [10 11 2 0 2] ---- y_test : 11
Prediction : 10.006927829604738 --- X_test : [12 10 2 0 8] ---- y_test : 11
Prediction : 6.771181021577023 --- X_test : [ 7 7 1 0 14] ---- y_test : 5
Prediction : 14.687004876841478 --- X_test : [15 14 2 1 20] ---- y_test : 13
Prediction : -1.5336199775675003 --- X_test : [5 0 1 3 0] ---- y_test : 0
Prediction : 12.03961334191373 --- X_test : [12 12 1 0 2] ---- y_test : 14
Prediction : 16.193668278966516 --- X_test : [16 16 4 0 12] ---- y_test : 16
Prediction : 10.789198557031956 --- X_test : [13 11 2 1 3] ---- y_test : 11
Prediction : 20.028343551352126 --- X_test : [18 19 1 0 6] ---- y_test : 19
Prediction : 11.781450629022554 --- X_test : [12 12 2 0 2] ---- y_test : 11
Prediction : 8.108615211995927 --- X_test : [9 9 2 1 0] ---- y_test : 0
Prediction : 8.576689366241535 --- X_test : [9 9 2 0 8] ---- y_test : 9
Prediction : 15.131884793733565 --- X_test : [15 15 2 0 0] ---- y_test : 15
Prediction : 5.806749263528372 --- X_test : [ 8 6 2 0 18] ---- y_test : 7
Prediction : 12.83641921108445 --- X_test : [16 12 1 0 8] ---- y_test : 13
Prediction : 8.286442335242612 --- X_test : [8 9 2 0 4] ---- y_test : 10
Prediction : 14.426714521437143 --- X_test : [15 14 2 0 8] ---- y_test : 14
Prediction : 11.631443819717818 --- X_test : [13 12 3 0 1] ---- y_test : 12
Prediction : 11.552952422512291 --- X_test : [12 11 1 0 16] ---- y_test : 11
Prediction : 6.366246633894805 --- X_test : [8 7 2 0 6] ---- y_test : 9
Prediction : 8.494962834522314 --- X_test : [ 8 8 1 0 30] ---- y_test : 8
Prediction : 15.640641177627472 --- X_test : [16 15 2 0 10] ---- y_test : 15
Prediction : 8.426682556936797 --- X_test : [10 9 3 0 7] ---- y_test : 9
Prediction : 18.44156682558733 --- X_test : [19 18 3 0 0] ---- y_test : 19
Prediction : 9.282958411399012 --- X_test : [ 8 10 2 0 4] ---- y_test : 10
Prediction : -0.5387269939571088 --- X_test : [10 0 2 0 0] ---- y_test : 0
Prediction : 10.051198547049877 --- X_test : [11 11 4 0 0] ---- y_test : 11
Prediction : 15.018296209911323 --- X_test : [16 15 3 0 0] ---- y_test : 15
Prediction : 9.168271054715717 --- X_test : [10 10 3 0 0] ---- y_test : 9
Prediction : 8.332487341917764 --- X_test : [ 9 9 2 2 11] ---- y_test : 9
Prediction : 9.499270218571887 --- X_test : [10 10 2 0 2] ---- y_test : 11
Prediction : 16.897739778401885 --- X_test : [17 17 4 0 0] ---- y_test : 18
Prediction : 10.856672230970094 --- X_test : [13 11 2 0 0] ---- y_test : 10
Prediction : 4.17622614000339 --- X_test : [ 6 5 1 3 16] ---- y_test : 5
Prediction : 10.120516413426978 --- X_test : [11 10 1 0 8] ---- y_test : 10
Prediction : -1.5014657562508038 --- X_test : [4 0 1 2 0] ---- y_test : 0
Prediction : 13.846220459439294 --- X_test : [13 14 2 0 0] ---- y_test : 15
Prediction : 15.276458922802497 --- X_test : [16 15 2 0 0] ---- y_test : 15
Prediction : 10.045543600809344 --- X_test : [10 10 2 0 17] ---- y_test : 10
Prediction : 8.213605884277618 --- X_test : [8 9 2 0 2] ---- y_test : 10
Prediction : 6.945067469855498 --- X_test : [8 8 1 3 2] ---- y_test : 10
Prediction : 5.745000439039713 --- X_test : [7 7 3 0 0] ---- y_test : 8
Prediction : 19.510627183495046 --- X_test : [18 18 1 1 24] ---- y_test : 18
Prediction : 8.285343562381557 --- X_test : [9 9 2 0 0] ---- y_test : 10
Prediction : 10.8898553219389 --- X_test : [13 11 3 0 8] ---- y_test : 11
Prediction : 14.98731066466463 --- X_test : [14 15 2 0 0] ---- y_test : 15
Prediction : 8.244591429524311 --- X_test : [10 9 3 0 2] ---- y_test : 9
Prediction : 10.92950868193509 --- X_test : [13 11 2 0 2] ---- y_test : 11
Prediction : 12.258122694808712 --- X_test : [12 12 1 0 8] ---- y_test : 12
Prediction : 11.928222303813598 --- X_test : [11 12 2 0 10] ---- y_test : 13
Prediction : -0.8910150186583691 --- X_test : [7 0 1 1 0] ---- y_test : 0
Prediction : 3.5935345322834342 --- X_test : [6 5 1 3 0] ---- y_test : 0
Prediction : 5.32840397170506 --- X_test : [6 7 2 3 0] ---- y_test : 0
Prediction : 9.169369827576771 --- X_test : [ 9 10 3 0 4] ---- y_test : 10
Prediction : 14.874820853703444 --- X_test : [14 15 3 0 4] ---- y_test : 16
Prediction : 10.64036042379722 --- X_test : [11 11 2 0 2] ---- y_test : 10
Prediction : 15.131884793733565 --- X_test : [15 15 2 0 0] ---- y_test : 15
Prediction : 19.325593090782544 --- X_test : [19 19 4 0 4] ---- y_test : 20
Prediction : 5.158781527592385 --- X_test : [ 6 6 2 1 13] ---- y_test : 8
Prediction : 7.650812195328021 --- X_test : [11 8 2 0 2] ---- y_test : 8
Prediction : 5.30981720654923 --- X_test : [ 6 6 2 2 22] ---- y_test : 4
Prediction : 14.20820516854216 --- X_test : [15 14 2 0 2] ---- y_test : 14
Prediction : 15.132983566594618 --- X_test : [14 15 2 0 4] ---- y_test : 15
Prediction : 18.08068088934552 --- X_test : [16 18 3 0 2] ---- y_test : 18
Prediction : 5.370829330599459 --- X_test : [ 7 6 2 0 10] ---- y_test : 6
Prediction : 20.174016453282114 --- X_test : [18 19 1 0 10] ---- y_test : 19
Prediction : 15.349295373767493 --- X_test : [16 15 2 0 2] ---- y_test : 15
Prediction : 10.713196874762215 --- X_test : [11 11 2 0 4] ---- y_test : 11
Prediction : 12.777966705178954 --- X_test : [12 13 2 0 2] ---- y_test : 13
Prediction : -0.9724493811639124 --- X_test : [7 0 2 0 0] ---- y_test : 0
Prediction : 8.581023273616283 --- X_test : [8 9 1 0 5] ---- y_test : 9
Prediction : 9.128617694719527 --- X_test : [10 10 4 0 6] ---- y_test : 11
Prediction : 13.067114963316824 --- X_test : [14 13 2 0 2] ---- y_test : 13