Jun-10-2022, 07:59 PM
when I try to run the following code, I get an error
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.seasonal import seasonal_decompose import time from tqdm import tqdm from scipy import stats from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.feature_selection import RFE from sklearn.ensemble import ExtraTreesClassifier from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve, auc from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from xgboost import XGBClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression df = pd.read_csv("sensor.csv") print('here') df.head() # Find Duplicate Values # Results will be the list of duplicate values # If no duplicate values, nothing will list. df[df['timestamp'].duplicated(keep=False)] df.isnull().sum() df['machine_status'].value_counts() # Convert timestamp column into data type into datetime df['timestamp'] = pd.to_datetime(df['timestamp']) # Create a Series time_period = pd.Series([]) # Assign values to series for i in tqdm(range(df.shape[0])): if (df["timestamp"][i].hour >= 4) and (df[timestamp][i].hour < 10): time_period[i]="Morning" elif (df["timestamp"][i].hour >= 10) and (df[timestamp][i].hour < 16): time_period[i]="Noon" elif (df["timestamp"][i].hour >= 16) and (df[timestamp][i].hour < 22): time_period[i]="Evening" else: time_period[i]="Night" # Insert new column time period df.Insert(2, 'time_period', time_period)I get an error. The error is: