Jan-09-2018, 07:22 PM
Just remember premature optimizing is the root of all evil.
Now if this was finish code. Using struct to optimize make since.
Me I probably be altering data in numpy. So numpy would be faster for me.
@Larc60 why use time.clock() over timeit.
Now if this was finish code. Using struct to optimize make since.
Me I probably be altering data in numpy. So numpy would be faster for me.
@Larc60 why use time.clock() over timeit.
import numpy as np import struct import timeit import time def windspar_build_up(): array = np.array((0, 0, 64, 65)) << np.array((0, 8, 16, 24)) return np.sum(array, dtype=np.int32).view(np.float32) def gribouillis_build_up(): return struct.unpack('>f', struct.pack('>BBBB', 65, 64, 0, 0))[0] def gribouillis_build_up2(): data = [0, 0, 64, 65] return struct.unpack('>f', struct.pack('>BBBB', *data[::-1]))[0] def Larz_timeit(func, loops): time0 = time.clock() for i in range(loops): func() time1 = time.clock() print('time build_up:', (time1 - time0) / loops) def main(): loop = 1000 print(timeit.timeit(windspar_build_up, number=loop)) print(timeit.timeit(gribouillis_build_up, number=loop)) print(timeit.timeit(gribouillis_build_up2, number=loop)) Larz_timeit(windspar_build_up, loop) Larz_timeit(gribouillis_build_up, loop) Larz_timeit(gribouillis_build_up2, loop) main()