
Econometrics, Python and VBA 

Python project

Summary :

The principle of this project is to build a simulation of an ideal trading bot which could take the best
trading decisions on cryptocurrency historical time series. 

The inputs are the name of the chosen cryptocurrency pairs (example: BTCEUR, ETHBTC, etc...),
and the amount of money available in your customer wallet.  A dedicated API exchange platform
will be used for this project.

The idea is to take the price curve of the cryptocurrency over a certain period, to split it in tables
corresponding to each day, to find minimum and maximum price of the current day. If the minimum
price arrives  before the maximum, calculate  the equivalent  trading gain considering that  a buy
operation has been done at the minimum price and a sell one at the maximum price. If the minimum
arrives after the maximum, no trading operation is done for this day.

The outputs are a list  all  the trading operations done over the period.  The information of each
trading are stored in a dictionary :

[
  {‘buy_date’: ‘2022-03-30 10:00’, ‘sell_date’: ‘2022-03-30 23:14’, ‘gain’: 0,74BTC, ‘relative gain’: 1%}, 
  {‘buy_date’: ‘2022-03-29 05:39’, ‘sell_date’: ‘2022-03-29 07:17’, ‘gain’: 0,01BTC, ‘relative gain’: 0,15%}
]



Project breakdown:

Enter the inputs (3 points)

Enter  the  name of  the  currency  source  (the  currency  contained  inside  the  wallet:  EUR,  BTC,
ETH...) and currency target (the currency to trade: ADA, BNB...), and the available amount in your
customer wallet. You can use “input” python function and make the good type conversion.

The start and end date of the period to consider will also be precised.

Connect to the platform exchange and fetch the price curve 
history (3 points)

For the purpose of this project, a dedicated exchange platform will be used. The url of the API  will 
be http://51.38.188.218/kedge/api/. The allowed requests will be :

- all_currencies : get the list of all currencies

- get_order_book/{symbol}?start={start_day}&end={end_day} : returns a list of pairs of prices (the
bids and the asks) for the currency pair from start to end with a time step of 1 min. The data will 
formatted this way :
[

  {

    "time": 1648594559.606206, # timestamp in s

    "bids": [["4.00000000", "431.00000000"]], # price, quantity

    "asks": [["4.00000200", "12.00000000"]]

  }, …

]

To access this API, you can use the python library request. An example of request :

>>> from requests import get

>>> url = 'http://  51.38.188.218/  kedge/  api  /get_order_book/  ETHBTC  ?start=  2022-01-01  &end=  2022-  
0  2  -  0  1'

>>> response = get(url)

>>> for line in response.json():

>>>           print(line)

http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31
http://51.38.188.218/api/kedge/get_order_book/ETHBTC?start=2022-01-01&end=2022-03-31


Build buy and sell DataFrame  (3 points)
Parse the data received from the exchange and format it to build a pandas DataFrame with a column
of prices to buy (from the “asks” part of the order book) and a column of prices to sell (from the 
“bids” part of the order book). Format the time value expressed in seconds to a date with the format 
“2022-01-01 22:10:03” and use it as an index column in the DataFrame.

Split according to the index of the global DataFrame to obtain a DataFrame for each day.

Calculate the best trade of each day (8 points)
Make a loop to treat each DataFrame for each day. Find the minimum and maximum price of the 
day. If the minimum arrives before the maximum, it means that for this day, an ideal trader could 
have bought the currency at the minimum price and sold it at the maximum price. In that case the 
trade can recorded in a dictionary. You can calculate the amount gained and the relative gain. For 
instance :
{‘buy_date’: ‘2022-03-30 10:00’, ‘sell_date’: ‘2022-03-30 23:14’, ‘gain’: 0,74BTC, ‘relative gain’: 1.07%}

If the minimum arrives after the maximum, no trade are done for this day.

Print the result (3 points)
Present the result in a DataFrame which can be printed on screen. Display a bar graph to show the 
curve of the gain and another one for the relative gain over the chosen period.

Bonus (5 points)
An interesting feature could be to be able to enter a date and to to display the curve of the prices for 
this day and mark a dot to show when the buy and sell operation were done during that day.

Another bonus could be the possibility to search for the best trade of the day even if the minimum 
arrive after the maximum. It implies to find a minimum value, which is not the minimum of the day,
followed by a maximum.


	Econometrics, Python and VBA
	Summary :
	Project breakdown:
	Enter the inputs (3 points)
	Connect to the platform exchange and fetch the price curve history (3 points)
	Build buy and sell DataFrame (3 points)
	Calculate the best trade of each day (8 points)
	Print the result (3 points)
	Bonus (5 points)


