![]() |
Pivot dataframe - Printable Version +- Python Forum (https://python-forum.io) +-- Forum: Python Coding (https://python-forum.io/forum-7.html) +--- Forum: Data Science (https://python-forum.io/forum-44.html) +--- Thread: Pivot dataframe (/thread-19263.html) |
Pivot dataframe - SriMekala - Jun-20-2019 2016-06-06 2016-06-07 2016-06-08 2016-06-09 2016-06-10 2016-06-11 2016-06-12 Group1 BHA Voltage 1 VGT Power 0 1 Group2 BNA Voltage 1 Volume 1 PAR ANM 0 Group3 KAL AAA 0I use the below, but its not pivoting as I required; Pivot table rules: Rowlable: Group, Name,Item, Column lable is Date, values are Value import pandas as pd import numpy as np input=r'D:\\pivotdata.xlsx' sheet_name='Sheet1' # csv new (create) file df=pd.read_excel(input,sheetname=sheet_name) df_new=pd.pivot_table(df,index=["Group","Name","Item"],values=["Date","Value"],aggfunc=[np.max],fill_value=0) RE: Pivot dataframe - Ecniv - Jun-21-2019 Probably need the original sheet of data too ? Reading the doc perhaps its more : import pandas as pd import numpy as np input=r'D:\\pivotdata.xlsx' sheet_name='Sheet1' # csv new (create) file df=pd.read_excel(input,sheetname=sheet_name) df_new=pd.pivot_table(df,index=["Group","Name","Item"],values="Value",columns="Date",aggfunc=[np.max],fill_value=0) RE: Pivot dataframe - SriMekala - Jun-22-2019 The original data is below: Group Name Date Item Value Group1 VGT 2016-06-06 Power 0 Group1 BHA 2016-06-07 Voltage 1 Group2 BNA 2016-06-08 Volume 1 Group3 KAL 2016-06-09 AAA 0 Group2 PAR 2016-06-10 ANM 0 Group1 VGT 2016-06-11 Power 1 Group2 BNA 2016-06-12 Voltage 1 |