![]() |
construction of Neural Network for solving Differential equations - Printable Version +- Python Forum (https://python-forum.io) +-- Forum: Python Coding (https://python-forum.io/forum-7.html) +--- Forum: Data Science (https://python-forum.io/forum-44.html) +--- Thread: construction of Neural Network for solving Differential equations (/thread-27360.html) |
construction of Neural Network for solving Differential equations - arshad - Jun-04-2020 hello there, i m trying to construct a code for a neural network to solve differential equations here is the code, can one plz take a look of the errors. will be grateful import numpy as np from autograd import grad, elementwise_grad N = 5 x = np.linspace(0, 1, N) n_neurons = 5 w_h = np.random.randn(n_neurons, N) w_o = np.random.randn(n_neurons, 1) w = [w_h, w_o] def sigmoid(z): return 1/(1+np.exp(-z)) def NN(x, w): a = np.dot(w_h, x) a1 = sigmoid(a) b = np.dot(a1, w_o) b1 = sigmoid(b) return b1 def gt(x, w): g0 = 1 return g0+x*NN(x, w) def g(x, gt): return x**3 + 2.*x + x**2 * ((1. + 3.*x**2) / (1. + x + x**3))-gt(x, w)*(x + (1. + 3.*x**2) / (1. + x + x**3)) def d_segmoid(z): return sigmoid(z)*(1-sigmoid(z)) def d_NN(x, w): k = 1 a11 = np.dot(w_o.T, w_h.T**k) return np.dot(a11, d_segmoid(x)) def loss_function(x, w): err = (d_NN(x, w)-g(x, gt))**2 cost_sum = np.sum(err) return cost_sum/ np.size(err) def optimalw(x, lmb): lmb = 0.001 for i in range(1000): loss_function_grad = grad(loss_function,0) w[0] = w[0]-lmb*loss_function_grad[0] w[1] = w[1]-lmb*loss_function_grad[1] return w
|