![]() |
AttributeError: 'DataFrame' object has no attribute 'Articles' - Printable Version +- Python Forum (https://python-forum.io) +-- Forum: Python Coding (https://python-forum.io/forum-7.html) +--- Forum: General Coding Help (https://python-forum.io/forum-8.html) +--- Thread: AttributeError: 'DataFrame' object has no attribute 'Articles' (/thread-33991.html) |
AttributeError: 'DataFrame' object has no attribute 'Articles' - Anldra12 - Jun-16-2021 Purposes I want to plot feathers importance for data prediction and training and testing Running Time Error: AttributeError: 'DataFrame' object has no attribute 'Articles' Codes lines: y = X.Articles.copy() X.drop(['Articles'], axis=1, inplace=True) RE: AttributeError: 'DataFrame' object has no attribute 'Articles' - Larz60+ - Jun-16-2021 you are not showing enough code. Show where X is defined. RE: AttributeError: 'DataFrame' object has no attribute 'Articles' - Anldra12 - Jun-16-2021 X is defined as X = pd.read_csv(r"D:\\Clustering\\text-cluster-master\\Articles.csv", error_bad_lines=False) X.head() RE: AttributeError: 'DataFrame' object has no attribute 'Articles' - Larz60+ - Jun-17-2021 The error is I don't see how X could have any attribute named Articles.It has never been defined. RE: AttributeError: 'DataFrame' object has no attribute 'Articles' - Anldra12 - Jun-17-2021 @Larz60+ have a look at the overall codes import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn.decomposition import PCA from sklearn.neighbors import KNeighborsClassifier matplotlib.style.use('ggplot') # Look Pretty def plotDecisionBoundary(model, X, y): fig = plt.figure() ax = fig.add_subplot(111) padding = 0.6 resolution = 0.0025 colors = ['royalblue','forestgreen','ghostwhite'] # Calculate the boundaris x_min, x_max = X[:, 0].min(), X[:, 0].max() y_min, y_max = X[:, 1].min(), X[:, 1].max() x_range = x_max - x_min y_range = y_max - y_min x_min -= x_range * padding y_min -= y_range * padding x_max += x_range * padding y_max += y_range * padding xx, yy = np.meshgrid(np.arange(x_min, x_max, resolution), np.arange(y_min, y_max, resolution)) Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour map cs = plt.contourf(xx, yy, Z, cmap=plt.cm.terrain) # Plot the test original points as well... for label in range(len(np.unique(y))): indices = np.where(y == label) plt.scatter(X[indices, 0], X[indices, 1], c=colors[label], label=str(label), alpha=0.8) p = model.get_params() plt.axis('tight') plt.title('K = ' + str(p['n_neighbors'])) X = pd.read_csv(r"D:\\Clustering\\text-cluster-master\\Articles.csv", error_bad_lines=False) X.head() y = X.Articles.copy() X.drop(['Articles'], axis=1, inplace=True) y = y.astype("category").cat.codes X.fillna(X.mean(), inplace=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1) normaliser = preprocessing.Normalizer().fit(X_train) X_train_normalised = normaliser.transform(X_train) X_train = pd.DataFrame(X_train_normalised) X_test_normalised = normaliser.transform(X_test) X_test = pd.DataFrame(X_test_normalised) pca_reducer = PCA(n_components=2).fit(X_train_normalised) X_train = pca_reducer.transform(X_train_normalised) X_test = pca_reducer.transform(X_test_normalised) knn = KNeighborsClassifier(n_neighbors=9) knn.fit(X_train, y_train) plotDecisionBoundary(knn, X_train, y_train) print(knn.score(X_test, y_test)) plt.show() RE: AttributeError: 'DataFrame' object has no attribute 'Articles' - Larz60+ - Jun-17-2021 Anldra12 Wrote:@Larz60+ have a look at the overall codes FYI: Because of the volume of posts, it's important to provide enough code on your first post. Error message shows error to be on line 68, which is now line 58, so doesn't match. code should match error message. |