![]() |
How to insert Dashed Lines in between Rows of a tabulate output - Printable Version +- Python Forum (https://python-forum.io) +-- Forum: Python Coding (https://python-forum.io/forum-7.html) +--- Forum: General Coding Help (https://python-forum.io/forum-8.html) +--- Thread: How to insert Dashed Lines in between Rows of a tabulate output (/thread-40805.html) |
How to insert Dashed Lines in between Rows of a tabulate output - Mudassir1987 - Sep-27-2023 Hi Im trying to format my report in python as per SAS proc report output. the expected output is shown below Any idea how can i insert 1.dashed lines between rows. and 2. double dash in last two total rows? my code below import pandas as pd from tabulate import tabulate # Sample data (you should replace this with your actual data) data = pd.read_csv(r"C:\\Users\\M68\\Downloads\\RV1.csv",delimiter="|") # Create a DataFrame from the sample data input_df = pd.DataFrame(data) # Renaming the columns and uppercase input_df.rename(columns={'_type_':'type'},inplace=True) input_df.columns=input_df.columns.str.upper() # Calculate the sums for each variable by 'TYPE' and 'SHPDT' output_df = input_df.groupby(['TYPE', 'SHPDT']).agg({ 'REVENUE': 'sum', 'REVPRTY': 'sum', 'REVECON': 'sum', 'C': 'sum', 'TP': 'sum', 'TE': 'sum' }).reset_index() # Rename the columns for the output DataFrame output_df.rename(columns={ 'SHPDT' : 'SHIPPED DATE', 'REVENUE': 'REVENUE\nALL SERVICES', 'REVPRTY': 'REVENUE\nPRIORITY', 'REVECON': 'REVENUE\nECONOMY', 'C': 'PROS\nALL\nSERVICES', 'TP': 'PROS\nPRIORITY', 'TE': 'PROS\nECONOMY' }, inplace=True) # Convert the 'SHPDT' column to a date format output_df['SHIPPED DATE'] = pd.to_datetime(output_df["SHIPPED DATE"]).dt.strftime('%d%b%y').str.upper() # Sort the DataFrame by 'TYPE' and 'SHPDT' output_df.sort_values(by=['TYPE', 'SHIPPED DATE'], inplace=True) # Display the output DataFrame print(output_df) # Generate the tabular report table = tabulate(output_df, headers='keys', tablefmt='grid') # Print the tabular report print(table) # Generate the summary statistics (you can customize this part based on your needs) summary_stats = output_df.groupby('TYPE').agg({ 'REVENUE\nALL SERVICES': 'sum', 'REVENUE\nPRIORITY': 'sum', 'REVENUE\nECONOMY': 'sum', 'PROS\nALL\nSERVICES': 'sum', 'PROS\nPRIORITY': 'sum', 'PROS\nECONOMY': 'sum' }).reset_index() summary_stats1 = output_df.groupby('TYPE').agg({ 'REVENUE\nALL SERVICES': 'sum', 'REVENUE\nPRIORITY': 'sum', 'REVENUE\nECONOMY': 'sum', 'PROS\nALL\nSERVICES': 'sum', 'PROS\nPRIORITY': 'sum', 'PROS\nECONOMY': 'sum' }).reset_index() # Display the summary statistics print(summary_stats) summary_stats['SHIPPED DATE'] = '' summary_stats1['SHIPPED DATE'] = '' report = pd.concat([output_df,summary_stats],keys=['output_df','summary_stats']) ids = report['TYPE'] report['flag'] = ((ids!=ids.shift(1)) | (ids!=ids.shift(-1))).astype(int) report.loc[report.flag == 0, 'TYPE'] = " " report1 = pd.concat([report.reset_index(drop=True),summary_stats1]) # Keeping TYPE in last row as blank report1.loc[report1.flag.isnull(), 'TYPE'] = " " report1 = report1.drop(columns=['flag']) # Addning comma between numeric values report1['REVENUE\nALL SERVICES'] = report1['REVENUE\nALL SERVICES'].map('{:,.2f}'.format) report1['REVENUE\nPRIORITY'] = report1['REVENUE\nPRIORITY'].map('{:,.2f}'.format) report1['REVENUE\nECONOMY'] = report1['REVENUE\nECONOMY'].map('{:,.2f}'.format)[attachment=2574] |