![]() |
The size of the array returned by func (1) does not match - Printable Version +- Python Forum (https://python-forum.io) +-- Forum: Python Coding (https://python-forum.io/forum-7.html) +--- Forum: Data Science (https://python-forum.io/forum-44.html) +--- Thread: The size of the array returned by func (1) does not match (/thread-7569.html) |
The size of the array returned by func (1) does not match - usmankhan - Jan-16-2018 I am new to python, so please bear with me. I am solving a model using odeint function in Python in which I am getting an error: The size of the array returned by func (1) does not match the size of y0 (2)... Maybe I am doing a mistake in returing args in odeint functions. I don't know what is the problem or maybe I am getting the error in wrong direction. Correct me if I am wrong. from scipy import * from scipy.integrate import odeint from operator import itemgetter import matplotlib matplotlib.use('Agg') from matplotlib.ticker import FormatStrFormatter from pylab import * import sys ExpData = [1.0 , 1.1660520579009868 , 1.3688685188071037 , 1.6165891026469563 , 1.9191557810726714 ] t_range = arange(0.0,20.0,0.1) initial_condi = [1,0.5] VarList = ["a","b"] ParaList = ["k1","k2"] k1 = 1 k2 = 2 if len(initial_condi)!=len(VarList): sys.exit('error') def odeFunc(Y,t,modelID,t1,t2): return GenModel(Y,modelID,t1,t2) def GenModel(Y,modelID,t1,t2): RetY = [None] if modelID == 1: RetY = Y[0] + Y[1] elif modelID == 2: RetY = t1*Y[0] + Y[1] elif modelID == 3: RetY = Y[0] + t1*Y[1] if Y[0] == 0 or Y[1] == 0: if modelID == 27: RetY = 0 elif modelID == 28: RetY = 0 if Y[0] != 0 and Y[1] != 0: if modelID == 27: RetY = Y[0]*Y[1] elif modelID ==28: RetY = t1*Y[0]*Y[1] elif modelID == 29: RetY = t2*Y[0]*Y[1] return RetY def EvalModelFitness(Stofloat,ExpData): Sum = 0.0 for i in range(len(Stofloat)): Sum += (Stofloat[i]-ExpData[i])**2 print Sum/len(Stofloat) if initial_condi[0] == 0 or initial_condi[1] == 0: NumModels = 28 else: NumModels = 39 for j in range(1,NumModels+1): S = odeint(odeFunc, initial_condi,t_range,args=(j,k1,k2)) Stofloat = S[:,0].astype(type('float',(float,),{})) EvalModelFitness(Stofloat,ExpData) |