Not sure what you try do.
It was just a quick function demo.
Can write it more useful like this,now is much flexible and can take different argument in.
Let say now want to check max in BTC/USD
It was just a quick function demo.
Can write it more useful like this,now is much flexible and can take different argument in.
import krakenex import pandas as pd api = krakenex.API() def calc_max(pair: str, interval: int, col_index: str) -> None: # make the API request for OHLC data ohlc_data = api.query_public('OHLC', {'pair': pair, 'interval': interval}) # Convert the data to a pandas dataframe df = pd.DataFrame(ohlc_data['result'][pair], columns=['time', 'open', 'high', 'low', 'close', 'vwap', 'volume', 'count']) df['time'] = pd.to_datetime(df['time'], unit='s') df.set_index('time', inplace=True) print(f'{df.head()}\n') max_price = df[col_index].max() print(f"Maximum price in the <{col_index}>: {max_price}") if __name__ == '__main__': pair = 'XRPGBP' interval = 60 col_index = 'open' calc_max(pair, interval, col_index)
Output:(dl_env) G:\div_code\dl_env
λ python calc_max.py
open high low close vwap volume count
time
2023-04-08 14:00:00 0.41009 0.41067 0.41003 0.41049 0.41031 2498.49848700 17
2023-04-08 15:00:00 0.41087 0.41087 0.41001 0.41002 0.41035 2470.63201500 19
2023-04-08 16:00:00 0.40983 0.40992 0.40913 0.40950 0.40945 5611.68209685 19
2023-04-08 17:00:00 0.40953 0.41037 0.40767 0.40767 0.40918 2416.04309153 15
2023-04-08 18:00:00 0.40755 0.40811 0.40507 0.40585 0.40658 5555.67721549 33
Maximum price in the <open>: 0.42970
Now it check max in XRPGBP open
column. Let say now want to check max in BTC/USD
high
column with interval 15.import krakenex import pandas as pd api = krakenex.API() def calc_max(pair: str, interval: int, col_index: str) -> None: # make the API request for OHLC data ohlc_data = api.query_public('OHLC', {'pair': pair, 'interval': interval}) # Convert the data to a pandas dataframe df = pd.DataFrame(ohlc_data['result'][pair], columns=['time', 'open', 'high', 'low', 'close', 'vwap', 'volume', 'count']) df['time'] = pd.to_datetime(df['time'], unit='s') df.set_index('time', inplace=True) print(f'{df.head()}\n') max_price = df[col_index].max() print(f"Maximum price in the <{col_index}>: {max_price}") if __name__ == '__main__': pair = 'BTC/USD' interval = 15 col_index = 'high' calc_max(pair, interval, col_index)
Output:G:\div_code\dl_env
λ python calc_max.py
open high low close vwap volume count
time
2023-05-01 02:15:00 28650.2 28678.1 28568.0 28600.0 28635.1 74.45265240 541
2023-05-01 02:30:00 28599.9 28652.7 28586.8 28589.4 28615.1 30.90120898 432
2023-05-01 02:45:00 28598.0 28623.1 28536.0 28555.3 28580.7 20.00984895 350
2023-05-01 03:00:00 28564.2 28565.1 28477.4 28491.9 28537.1 41.99185887 436
2023-05-01 03:15:00 28489.1 28605.7 28450.0 28595.8 28537.2 42.52158371 402
Maximum price in the <high>: 29868.1