I have astype(int) yet the columns are coming up as object
Trying to clean the selected columns
Trying to clean the selected columns
|
Jun-08-2018, 07:42 PM
Post the code, output and possible errors here in proper tags. You can find help here.
Jun-08-2018, 07:54 PM
the whole notebook ?
Jun-08-2018, 07:56 PM
Yes, or at least the relevant part of code which is causing problems. Along with actual output vs desired output.
Jun-08-2018, 08:27 PM
(This post was last modified: Jun-08-2018, 08:32 PM by paulgureghian.)
ValueError Traceback (most recent call last)
<ipython-input-97-460999a4b9d1> in <module>() 5 df.Budget = df.Budget.str.replace(',', '') 6 df.Budget = df.Budget.str.replace('$', '') ----> 7 df.Budget = df.Budget.astype(int) 8 # Budget column is ready. C:\ProgramData\Anaconda3\lib\site-packages\pandas\util\_decorators.py in wrapper(*args, **kwargs) 175 else: 176 kwargs[new_arg_name] = new_arg_value --> 177 return func(*args, **kwargs) 178 return wrapper 179 return _deprecate_kwarg C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py in astype(self, dtype, copy, errors, **kwargs) 4995 # else, only a single dtype is given 4996 new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors, -> 4997 **kwargs) 4998 return self._constructor(new_data).__finalize__(self) 4999 C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals.py in astype(self, dtype, **kwargs) 3712 3713 def astype(self, dtype, **kwargs): -> 3714 return self.apply('astype', dtype=dtype, **kwargs) 3715 3716 def convert(self, **kwargs): C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals.py in apply(self, f, axes, filter, do_integrity_check, consolidate, **kwargs) 3579 3580 kwargs['mgr'] = self -> 3581 applied = getattr(b, f)(**kwargs) 3582 result_blocks = _extend_blocks(applied, result_blocks) 3583 C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals.py in astype(self, dtype, copy, errors, values, **kwargs) 573 def astype(self, dtype, copy=False, errors='raise', values=None, **kwargs): 574 return self._astype(dtype, copy=copy, errors=errors, values=values, --> 575 **kwargs) 576 577 def _astype(self, dtype, copy=False, errors='raise', values=None, C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals.py in _astype(self, dtype, copy, errors, values, klass, mgr, **kwargs) 662 663 # _astype_nansafe works fine with 1-d only --> 664 values = astype_nansafe(values.ravel(), dtype, copy=True) 665 values = values.reshape(self.shape) 666 C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\dtypes\cast.py in astype_nansafe(arr, dtype, copy) 707 # work around NumPy brokenness, #1987 708 if np.issubdtype(dtype.type, np.integer): --> 709 return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape) 710 711 # if we have a datetime/timedelta array of objects pandas\_libs\lib.pyx in pandas._libs.lib.astype_intsafe() pandas/_libs/src\util.pxd in util.set_value_at_unsafe() ValueError: invalid literal for int() with base 10: 'Production Co: Path BBC Films Proud Films See more' df.Budget = df.Budget.astype(int) it keeps coming up "object"
Probably, some rows in that column cannot be converted. You masy convert those rows that contain only digits is the way shown below
digits = s.str.isdigit().fillna(False) s[digits] = s[digits].astype(int)
Test everything in a Python shell (iPython, Azure Notebook, etc.)
|
|
Possibly Related Threads… | |||||
Thread | Author | Replies | Views | Last Post | |
manipulating .csv file into columns of selected data | Karen_Masila | 2 | 3,593 |
Feb-14-2018, 06:50 AM Last Post: Karen_Masila |
Users browsing this thread: 1 Guest(s)