Posts: 13
Threads: 5
Joined: Jul 2018
I'm trying to solve this system of non linear equations using scipy.optimize.fsolve , I took this from an example in one other post [here][1]
my system of equation is the follow :
for i in range(len(self.time)-1):
def equations(variable):
k1,k2 = variable
f1 = -k1 + self.f(self.time[i]+ (0.5+np.sqrt(3)/6)* self.dt , self.u[i]+0.25*self.dt* k1+ (0.25+ np.sqrt(3)/6)*self.dt*k2)
f2 = -k2 + self.f(self.time[i]+ (0.5-np.sqrt(3)/6)* self.dt , self.u[i]+(0.25-np.sqrt(3)/6)*self.dt *k1 + 0.25*self.dt* k2)
return (f1,f2)
k1,k2 = fsolve(equations,(5,5)) when I run the code I got :
TypeError: fsolve: there is a mismatch between the input and output shape of the 'func' argument 'equations'.Shape should be (2,) but it is (2, 1). I don't know why this mismatch and how to fix it ..
I tried :
for i in range(len(self.time)-1):
ui = self.u[i]
ti = self.time[i]
def equations(variable):
k1,k2 = variable
f1 = -k1 + self.f(ti+ (0.5+np.sqrt(3)/6)* self.dt , ui+0.25*self.dt* k1+ (0.25+ np.sqrt(3)/6)*self.dt*k2)
f2 = -k2 + self.f(ti+ (0.5-np.sqrt(3)/6)* self.dt , ui+(0.25-np.sqrt(3)/6)*self.dt *k1 + 0.25*self.dt* k2)
return (f1,f2)
k1,k2 = fsolve(equations,(1,1)) how can I fix this mismatch ?
Posts: 817
Threads: 1
Joined: Mar 2018
It seems to be an implicit Runge-Kutta method implementation...
You are declaring equations in the loop, that is definitely inefficient.
equations should return ndarray, so, change return (f1,f2) to return np.array([f1, f2]) .
Posts: 13
Threads: 5
Joined: Jul 2018
Aug-14-2018, 07:08 AM
(This post was last modified: Aug-14-2018, 07:11 AM by drudox.)
yes it is an Implicit Runge Kutta method !! I've already done this ! and actually now my solve methods is this :
d ef solve(self):
'''
perform Implicit RK4 scheme
'''
self.time , self.u = self.dydt.createArray()
print("Running Implicit RK 4th order")
for i in range(len(self.time)-1):
def equations(variable):
k1, k2 = variable
f1 = -k1 + self.f(self.time[i]+ (0.5+np.sqrt(3)/6)* self.dt , self.u[i]+0.25*self.dt* k1+ (0.25+ np.sqrt(3)/6)*self.dt*k2)
f2 = -k2 + self.f(self.time[i]+ (0.5-np.sqrt(3)/6)* self.dt , self.u[i]+(0.25-np.sqrt(3)/6)*self.dt *k1 + 0.25*self.dt* k2)
return np.array([f1,f2]).ravel() #.reshape(2,)
k1 , k2 = fsolve(equations,(self.u[i],self.u[i]))
self.u[i+1] = self.u[i] + self.dt/2* (k1 + k2)
print('... Done!') this works fine when I deal with a ODE single equations ... but doesn't works when I deal with system of ODE ... may you help me to find the right way to proceed ?
I declare the equation inside the for loop (where else ?) because k1 , k2 are function of self.time[i], self.u[i]
Posts: 13
Threads: 5
Joined: Jul 2018
Here I report the whole class (I have cut the irrelevant part) in order to be testable for who want to try to give me help !
import numpy as np
from scipy.optimize import fsolve , newton_krylov
import matplotlib.pyplot as plt
class ImpRK4 :
def __init__(self, fun , t0, tf, dt , y0):
self.func = fun
self.t0=t0
self.tf=tf
self.dt=dt
self.u0=y0
self.n = round((tf-t0)/dt)
self.time = np.linspace(self.t0, self.tf, self.n+1 )
self.u = np.array([self.u0 for i in range(self.n+1) ])
def f(self,ti,ui):
return np.array([functions(ti,ui) for functions in self.func])
def solve(self):
for i in range(len(self.time)-1):
def equations(variable):
k1,k2 = variable
f1 = -k1 + self.f(self.time[i]+ (0.5+np.sqrt(3)/6)* self.dt , self.u[i]+0.25*self.dt* k1+ (0.25+ np.sqrt(3)/6)*self.dt*k2)
f2 = -k2 + self.f(self.time[i]+ (0.5-np.sqrt(3)/6)* self.dt , self.u[i]+(0.25-np.sqrt(3)/6)*self.dt *k1 + 0.25*self.dt* k2)
return np.array([f1,f2]).ravel() #.reshape(2,)
k1 , k2 = fsolve(equations,(2,2)) #(self.u[i],self.u[i]))
self.u[i+1] = self.u[i] + self.dt/2* (k1 + k2)
plt.plot(self.time,self.u)
plt.show()
def main():
func00 = lambda t,u : -10*(t-1)*u[0]
func01 = lambda t,u : u[1]
func02 = lambda t,u : (1-u[0]**2)*u[1] - u[0]
func0x = np.array([func00])
func0 = np.array([func01,func02])
t0 = 0.
tf = 2.
u0 = y01
dt = 0.008
y01 = np.array([1.,1.])
diffeq = ImpRK4(func0,t0,tf,dt,y01)
#y0 = np.array([np.exp(-5)])
#diffeq.solve()
#diffeq = ImpRK4(func0x,t0,tf,dt,y0) ## with single equations works
diffeq.solve()
if __name__ == '__main__':
main()
Posts: 817
Threads: 1
Joined: Mar 2018
In case of system of ordinary differential equations you will faced with necessity to solve
algebraic system of size m*s , where m -- the number of differential equations, s -- the number of stages in rk-method.
I slightly modified the code above to be able to handle systems of ODEs, but it still includes hardcoded
components (e.g. the number of stages, s=2), so improvements definitely needed:
import numpy as np
from scipy.optimize import fsolve , newton_krylov
import matplotlib.pyplot as plt
class ImpRK4 :
def __init__(self, functions, t0, tf, dt, y0):
self.functions = functions
self.t0 = t0
self.tf = tf
self.dt = dt
self.u0 = y0
self.n = round((tf - t0) / dt)
self.time = np.linspace(self.t0, self.tf, self.n+1)
self.u = np.array([self.u0 for i in range(self.n+1)])
self.m = len(functions) # the number of equations (you can estimate it)
def ode(self, t, u):
return np.array([func(t, u) for func in self.functions]) # u is an array of size `m`!
def implicit_equations(self, variables, ti, ui):
k1, k2 = variables[:self.m], variables[self.m:]
f1 = -k1 + self.ode(ti + (0.5 + np.sqrt(3) / 6) * self.dt, ui + 0.25 * self.dt * k1 + (0.25 + np.sqrt(3) / 6) * self.dt * k2)
f2 = -k2 + self.ode(ti + (0.5 - np.sqrt(3) / 6) * self.dt, ui + (0.25 - np.sqrt(3) / 6) * self.dt * k1 + 0.25 * self.dt * k2)
return np.hstack([f1,f2]).ravel()
def solve(self):
s = 2
for i in range(len(self.time) - 1):
res = fsolve(self.implicit_equations, np.random.rand(self.m * s), args=(self.time[i], self.u[i])) # s =2, the number of stadies of the num method
k1, k2 = res[:self.m], res[self.m:]
self.u[i + 1] = self.u[i] + self.dt / 2 * (k1 + k2)
print('The system is solved.')
def main():
func00 = lambda t,u : -10*(t-1)*u[0]
func01 = lambda t,u : u[1]
func02 = lambda t,u : (1-u[0]**2)*u[1] - u[0]
func0x = np.array([func00])
func0 = np.array([func01,func02])
t0 = 0.
tf = 2.
y01 = np.array([1., 1.])
dt = 0.008
diffeq = ImpRK4(func0,t0,tf,dt,y01)
diffeq.solve()
plt.plot(diffeq.u[:,1], diffeq.u[:,0])
plt.show()
if __name__ == '__main__':
main()
Posts: 13
Threads: 5
Joined: Jul 2018
Congratulations ! and thank you very much !! you are the best ;)
Posts: 13
Threads: 5
Joined: Jul 2018
How can obtain the same result using another solver like newton_krylov ??
Posts: 817
Threads: 1
Joined: Mar 2018
indeed, the newton_krylov method doesnt' support extra arguments, but you can wrap
the implicit-equations using lambda function, e.g.:
res = newton_krylov(lambda vars: self.implicit_equations(vars, self.time[i], self.u[i]), np.random.rand(self.m * s))
|