Python Forum
ImportError: DLL load failed: %1 is not a valid Win32 application.
Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
ImportError: DLL load failed: %1 is not a valid Win32 application.
#1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import tensorflow as tf
import numpy as np
import pickle, os, cv2
 
tf.logging.set_verbosity(tf.logging.INFO)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
 
def get_image_size():
    img = cv2.imread('gestures/0/100.jpg', 0)
    return img.shape
 
def get_num_of_classes():
    return len(os.listdir('gestures/'))
 
image_x, image_y = get_image_size()
 
def cnn_model_fn(features, labels, mode):
    input_layer = tf.reshape(features["x"], [-1, image_x, image_y, 1], name="input")
 
    conv1 = tf.layers.conv2d(
      inputs=input_layer,
      filters=16,
      kernel_size=[2, 2],
      padding="same",
      activation=tf.nn.relu,
      name="conv1")
    print("conv1",conv1.shape)
    pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2, name="pool1")
    print("pool1",pool1.shape)
 
    conv2 = tf.layers.conv2d(
      inputs=pool1,
      filters=32,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu,
      name="conv2")
    print("conv2",conv2.shape)
    pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[5, 5], strides=5, name="pool2")
    print("pool2",pool2.shape)
 
    conv3 = tf.layers.conv2d(
      inputs=pool2,
      filters=64,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu,
      name="conv3")
    print("conv3",conv3.shape)
 
    # Dense Layer
    flat = tf.reshape(conv3, [-1, 5*5*64], name="flat")
    print(flat.shape)
    dense = tf.layers.dense(inputs=flat, units=128, activation=tf.nn.relu, name="dense")
    print(dense.shape)
    dropout = tf.layers.dropout(inputs=dense, rate=0.2, training=mode == tf.estimator.ModeKeys.TRAIN, name="dropout")
 
    # Logits Layer
    num_of_classes = get_num_of_classes()
    logits = tf.layers.dense(inputs=dropout, units=num_of_classes, name="logits")
 
    output_class = tf.argmax(input=logits, axis=1, name="output_class")
    output_probab = tf.nn.softmax(logits, name="softmax_tensor")
    predictions = {"classes": tf.argmax(input=logits, axis=1), "probabilities": tf.nn.softmax(logits, name="softmax_tensor")}
    #tf.Print(tf.nn.softmax(logits, name="softmax_tensor"), [tf.nn.softmax(logits, name="softmax_tensor")])
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
 
    # Calculate Loss (for both TRAIN and EVAL modes)
    onehot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=num_of_classes)
    loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels, logits=logits)
 
    # Configure the Training Op (for TRAIN mode)
    if mode == tf.estimator.ModeKeys.TRAIN:
        optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-2)
        train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
        return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
 
    # Add evaluation metrics (for EVAL mode)
    eval_metric_ops = {"accuracy": tf.metrics.accuracy(labels=labels, predictions=predictions["classes"])}
    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
 
def main(argv):
    with open("train_images", "rb") as f:
        train_images = np.array(pickle.load(f))
    with open("train_labels", "rb") as f:
        train_labels = np.array(pickle.load(f), dtype=np.int32)
 
    with open("test_images", "rb") as f:
        test_images = np.array(pickle.load(f))
    with open("test_labels", "rb") as f:
        test_labels = np.array(pickle.load(f), dtype=np.int32)
    #print(len(train_images[1]), len(train_labels))
 
    classifier = tf.estimator.Estimator(model_fn=cnn_model_fn, model_dir="tmp/cnn_model3")
 
    tensors_to_log = {"probabilities": "softmax_tensor"}
    logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=50)
 
    train_input_fn = tf.estimator.inputs.numpy_input_fn(x={"x": train_images}, y=train_labels, batch_size=500, num_epochs=10, shuffle=True)
    classifier.train(input_fn=train_input_fn, hooks=[logging_hook])
 
    # Evaluate the model and print results
    eval_input_fn = tf.estimator.inputs.numpy_input_fn(
      x={"x": test_images},
      y=test_labels,
      num_epochs=1,
      shuffle=False)
    test_results = classifier.evaluate(input_fn=eval_input_fn)
    print(test_results)
 
 
if __name__ == "__main__":
    tf.app.run()
My error is Traceback (most recent call last):
Error:
File "C:\Users\NTU\Desktop\Sign-Language-master\cnn_tf.py", line 1, in <module> import tensorflow as tf File "C:\Users\NTU\Anaconda3\envs\dip\lib\site-packages\tensorflow\__init__.py", line 22, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "C:\Users\NTU\Anaconda3\envs\dip\lib\site-packages\tensorflow\python\__init__.py", line 27, in <module> import ctypes File "C:\Users\NTU\Anaconda3\envs\dip\lib\ctypes\__init__.py", line 7, in <module> from _ctypes import Union, Structure, Array ImportError: DLL load failed: %1 is not a valid Win32 application.this:
Anyone can help me Wall
Reply
#2
(Oct-13-2018, 03:07 PM)LiTing Wrote: ImportError: DLL load failed: %1 is not a valid Win32 application.this:
This error is always a mix up 32-bit - 64-bit.
If you start Anaconda.
1
2
3
Python 3.6.5 |Anaconda custom (64-bit)| (default, Mar 29 2018, 13:32:41) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>>
[MSC v.1900 64 bit (AMD64)] Anacoda use here Python 64-bit.
If 32-bit [MSC v.1914 32 bit (Intel)].
TensorFlow requires a 64-bit OS.
All install trough conda or pip has to be 64-bit when use 64-bit Python.
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  ImportError: numpy.core.multiarray failed to import Nimya 3 22,995 Jun-12-2018, 02:32 PM
Last Post: volcano63
  ImportError: DLL load failed: The specified procedure could not be found. chess 1 4,885 Sep-17-2017, 10:12 PM
Last Post: Larz60+

Forum Jump:

User Panel Messages

Announcements
Announcement #1 8/1/2020
Announcement #2 8/2/2020
Announcement #3 8/6/2020