Here is the code
*************************
it works well for well for but for
ERROR WHEN I CONNECT TO SPREADSHEETS CSV
******
*************************
import codecs from math import sqrt users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,            "Norah Jones": 4.5, "Phoenix": 5.0,            "Slightly Stoopid": 1.5,            "The Strokes": 2.5, "Vampire Weekend": 2.0},           "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,          "Deadmau5": 4.0, "Phoenix": 2.0,          "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},           "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,          "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,          "Slightly Stoopid": 1.0},           "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,          "Deadmau5": 4.5, "Phoenix": 3.0,          "Slightly Stoopid": 4.5, "The Strokes": 4.0,          "Vampire Weekend": 2.0},           "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,           "Norah Jones": 4.0, "The Strokes": 4.0,           "Vampire Weekend": 1.0},           "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0,            "Norah Jones": 5.0, "Phoenix": 5.0,            "Slightly Stoopid": 4.5, "The Strokes": 4.0,            "Vampire Weekend": 4.0},           "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,          "Norah Jones": 3.0, "Phoenix": 5.0,          "Slightly Stoopid": 4.0, "The Strokes": 5.0},           "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,            "Phoenix": 4.0, "Slightly Stoopid": 2.5,            "The Strokes": 3.0}     } class recommender:   def __init__(self, data, k=1, metric='pearson', n=5):     """ initialize recommender     currently, if data is dictionary the recommender is initialized     to it.     For all other data types of data, no initialization occurs     k is the k value for k nearest neighbor     metric is which distance formula to use     n is the maximum number of recommendations to make"""     self.k = k     self.n = n     self.username2id = {}     self.userid2name = {}     self.productid2name = {}     # for some reason I want to save the name of the metric     self.metric = metric     if self.metric == 'pearson':       self.fn = self.pearson     #     # if data is dictionary set recommender data to it     #     if type(data).__name__ == 'dict':       self.data = data   def convertProductID2name(self, id):     """Given product id number return product name"""     if id in self.productid2name:       return self.productid2name[id]     else:       return id   def userRatings(self, id, n):     """Return n top ratings for user with id"""     print ("Ratings for " + self.userid2name[id])     ratings = self.data[id]     print(len(ratings))     ratings = list(ratings.items())     ratings = [(self.convertProductID2name(k), v)           for (k, v) in ratings]     # finally sort and return     ratings.sort(key=lambda artistTuple: artistTuple[1],            reverse = True)     ratings = ratings[:n]     for rating in ratings:       print("%s\t%i" % (rating[0], rating[1]))             def loadBookDB(self, path=''):     """loads the BX book dataset. Path is where the BX files are     located"""     self.data = {}     i = 0     #     # First load book ratings into self.data     #     f = codecs.open(path + "BX-Book-Ratings.csv", 'r', 'utf8')     for line in f:       i += 1       #separate line into fields       fields = line.split(';')       user = fields[0].strip('"')       book = fields[1].strip('"')       rating = int(fields[2].strip().strip('"'))       if user in self.data:         currentRatings = self.data[user]       else:         currentRatings = {}       currentRatings[book] = rating       self.data[user] = currentRatings     f.close()     #     # Now load books into self.productid2name     # Books contains isbn, title, and author among other fields     #     f = codecs.open(path + "BX-Books.csv", 'r', 'utf8')     for line in f:       i += 1       #separate line into fields       fields = line.split(';')       isbn = fields[0].strip('"')       title = fields[1].strip('"')       author = fields[2].strip().strip('"')       title = title + ' by ' + author       self.productid2name[isbn] = title     f.close()     #     #  Now load user info into both self.userid2name and     #  self.username2id     #     f = codecs.open(path + "BX-Users.csv", 'r', 'utf8')     for line in f:       i += 1       #print(line)       #separate line into fields       fields = line.split(';')       userid = fields[0].strip('"')       location = fields[1].strip('"')       if len(fields) > 3:         age = fields[2].strip().strip('"')       else:         age = 'NULL'       if age != 'NULL':         value = location + '  (age: ' + age + ')'       else:         value = location       self.userid2name[userid] = value       self.username2id[location] = userid     f.close()     print(i)                 def pearson(self, rating1, rating2):     sum_xy = 0     sum_x = 0     sum_y = 0     sum_x2 = 0     sum_y2 = 0     n = 0     for key in rating1:       if key in rating2:         n += 1         x = rating1[key]         y = rating2[key]         sum_xy += x * y         sum_x += x         sum_y += y         sum_x2 += pow(x, 2)         sum_y2 += pow(y, 2)     if n == 0:       return 0     # now compute denominator     denominator = (sqrt(sum_x2 - pow(sum_x, 2) / n)             * sqrt(sum_y2 - pow(sum_y, 2) / n))     if denominator == 0:       return 0     else:       return (sum_xy - (sum_x * sum_y) / n) / denominator   def computeNearestNeighbor(self, username):     """creates a sorted list of users based on their distance to     username"""     distances = []     for instance in self.data:       if instance != username:         distance = self.fn(self.data[username],                   self.data[instance])         distances.append((instance, distance))     # sort based on distance -- closest first     distances.sort(key=lambda artistTuple: artistTuple[1],             reverse=True)     return distances   def recommend(self, user):     """Give list of recommendations"""     recommendations = {}     # first get list of users  ordered by nearness     nearest = self.computeNearestNeighbor(user)     #     # now get the ratings for the user     #     userRatings = self.data[user]     #     # determine the total distance     totalDistance = 0.0     for i in range(self.k):      totalDistance += nearest[1]     # now iterate through the k nearest neighbors     # accumulating their ratings     for i in range(self.k):      # compute slice of pie      weight = nearest[1] / totalDistance      # get the name of the person      name = nearest[0]      # get the ratings for this person      neighborRatings = self.data[name]      # get the name of the person      # now find bands neighbor rated that user didn't      for artist in neighborRatings:        if not artist in userRatings:         if artist not in recommendations:           recommendations[artist] = (neighborRatings[artist]                        * weight)         else:           recommendations[artist] = (recommendations[artist]                        + neighborRatings[artist]                        * weight)     # now make list from dictionary     recommendations = list(recommendations.items())     recommendations = [(self.convertProductID2name(k), v)              for (k, v) in recommendations]     # finally sort and return     recommendations.sort(key=lambda artistTuple: artistTuple[1],               reverse = True)     # Return the first n items     return recommendations[:self.n]*******************************
it works well for well for but for
>>> r = recommender(users) >>> r.recommend('Jordyn') [('Blues Traveler', 5.0)] >>> r.recommend('Hailey') [('Phoenix', 5.0), ('Slightly Stoopid', 4.5)]*******
ERROR WHEN I CONNECT TO SPREADSHEETS CSV
******
>>> r.loadBookDB('/Users/Basil/Documents/CODE/PYTHON/BX-Dump/') Traceback (most recent call last):  File "<pyshell#4>", line 1, in <module>   r.loadBookDB('/Users/Basil/Documents/CODE/PYTHON/BX-Dump/')  File "C:\Users\Basil\Documents\CODE\PYTHON\recommender.py", line 108, in loadBookDB   rating = int(fields[2].strip().strip('"')) ValueError: invalid literal for int() with base 10: 'Book-Rating' >>> r.recommend('171118') Traceback (most recent call last):  File "<pyshell#5>", line 1, in <module>   r.recommend('171118')  File "C:\Users\Basil\Documents\CODE\PYTHON\recommender.py", line 207, in recommend   userRatings = self.data[user] KeyError: '171118' >>>  r.userRatings('171118', 5)  SyntaxError: unexpected indent >>> r.userRatings('171118', 5) Traceback (most recent call last):  File "<pyshell#7>", line 1, in <module>   r.userRatings('171118', 5)  File "C:\Users\Basil\Documents\CODE\PYTHON\recommender.py", line 77, in userRatings   print ("Ratings for " + self.userid2name[id]) KeyError: '171118' >>>ÂIT WORKED ONCE YESTERDAY BUT NOT TODAY, WHY DOES THE PROGRAM NOT RUN FOR THE CSV FILES. WHAT AM I DOING WRONG ? HOW DO I FIX THE CODE IS THE PROBLEM - r.loadBookDB('/Users/Basil/Documents/CODE/PYTHON/BX-Dump/') ?