Posts: 19
Threads: 11
Joined: Mar 2019
Mar-16-2019, 12:22 PM
(This post was last modified: Mar-16-2019, 12:22 PM by mcva.)
Thank you for taking some time to read this problem...
I have this nested for loop and I´m note sure its doing what I need.
I need to run a lake temperature model for N = 365 and for each day (i) the first loop calculates the values off b0,c0,d0,an,bn and dn. The second loop has to go trough 40 layers (j)and calculate the coefficients ai, bi, ci, and di. Then the code line:
TempTDMA=TDMAsolver(a[i-1], b[i-1], c[i-1], d[i-1]) returns a list of values after applying the TDMAsolver function for each day(i) with the following input: b0,c0,d0, an,bn and dn, a1...aNlayers-1, b1...bNlayers-1, c1...cNlayers-1 and d1...dNlayers-1
the strange thing is that results seem to be ok, but I can´t remove the following line that´s no used by the model:
CANT_REMOVE_THIS_LINE=fix_profile(n,TempTDMA,Areat0) I get an error in a function thats note linked with this code line, I can change the name of the variable associated with the fix_profile funtion ("CANT_REMOVE_THIS_LINE2) and the model runs!
this are the neested loops:
N=365
Nlayers=40
for i in xrange(1,N+1):
I=np.linspace(1,N,N)
Radiation[i-1] = EquilibriumTemp(air[i-1], RelativeHumidity[i-1], wind[i-1], ClearSkyRadiation[i-1], TempLake[i-1][0])
Thermocline_Depth[i-1] = ThermoTemp(TempLake[i-1], z, Smin=0.1, seasonal=True, index=False, mixed_cutoff=1)
K[i-1]=Keddy(TempLake[i-1],z,wind[i-1],Areat0)
K[i]=Keddy(TempLake[i-1],z,wind[i-1],Areat0)
#surface
#b0, c0, d0
b[i-1][0]=1+alfa[0]*s*(0.0+2.0*K[i][0]+K[i][1])
c[i-1][0]=-alfa[0]*s*(0.0+2.0*K[i][0]+K[i][1])
d[i-1][0]=((1.0-alfa[0]*s*(0.0+2.0*K[i-1][0]+K[i-1][1]))*TempLake[i-1][0])+(alfa[0]*s*(0.0+2.0*K[i-1][0]+K[i-1][1])*TempLake[i-1][1])+alfa[0]*s*(0.0+K[i-1][0])*((2*Radiation[i-1]*DZ)/(Cp*DH2O*(K[i-1][0]/Areat0[0])))+alfa[0]*s*(0.0+K[i][0])*((2.0*Radiation[i-1]*DZ)/(DH2O*Cp*(K[i][0]/Areat0[0])))
#Bottom
#an, bn, dn
a[i-1][-1]=-alfa[-1]*s*(K[i][-2]+2.0*K[i][-1]+0.0)
b[i-1][-1]=1+alfa[-1]*s*(K[i][-2]+2.0*K[i][-1]+0.0)
d[i-1][-1]=alfa[-1]*s*TempLake[i-1][-2]*(K[i-1][-2]+2.0*K[i-1][-1]+0.0)+(1-alfa[-1]*s*(K[i-1][-2]+2*K[i-1][-1]+0.0))*TempLake[i-1][-1] # 0,1,2,3,4,5,6,7,8,9
#ai, bi, ci, di
for j in xrange(1,Nlayers-1):# 40
a[i-1][j-1]=-alfa[j]*s*(K[i][j-1]+K[i][j]) # 40
b[i-1][j]=1.0+alfa[j]*s*(K[i][j-1]+2.0*K[i][j]+K[i][j+1])
c[i-1][j]=-alfa[j]*s*(K[i][j]+K[i][j+1])
d[i-1][j]=alfa[j]*s*(K[i-1][j]+K[i-1][j-1])*TempLake[i-1][j-1]+alfa[j]*s*(K[i-1][j+1]+K[i-1][j])*TempLake[i-1][j+1]+(1-alfa[j]*s*(K[i-1][j-1]+2.0*K[i-1][j]+K[i-1][j+1]))*TempLake[i-1][j]
TempTDMA=TDMAsolver(a[i-1], b[i-1], c[i-1], d[i-1])
n=len(TempTDMA)
CANT_REMOVE_THIS_LINE=fix_profile(n,TempTDMA,Areat0)
TempLake[i]=TempTDMA the error ocurs inside the function ThermoTemp:
Error: Traceback (most recent call last):
File "C:\Users\manue\Google Drive\Lake model\PythonLakeModel\ModCastelo do Bode\src\2_Temp_model_version2.py", line 384, in <module>
Thermocline_Depth[i-1] = ThermoTemp(TempLake[i-1], z, Smin=0.1, seasonal=True, index=False, mixed_cutoff=1)
File "C:\Users\manue\Google Drive\Lake model\PythonLakeModel\ModCastelo do Bode\src\2_Temp_model_version2.py", line 169, in ThermoTemp
Sdn = -(depths[thermoInd+1] - depths[thermoInd])/(drho_dz[thermoInd+1] - drho_dz[thermoInd])
IndexError: index 40 is out of bounds for axis 0 with size 40
Posts: 2,168
Threads: 35
Joined: Sep 2016
The function fix_profile must be altering something that the rest of the code is dependant on.
No one else can understand the code that has been presented.
Posts: 19
Threads: 11
Joined: Mar 2019
Mar-16-2019, 12:53 PM
(This post was last modified: Mar-16-2019, 12:59 PM by mcva.)
(Mar-16-2019, 12:51 PM)Yoriz Wrote: The function fix_profile must be altering something that the rest of the code is dependant on.
No one else can understand the code that has been presented.
Its not altering nothing,
I can change the name of the variable CANT_REMOVE_THIS_LINE=fix_profile(n,TempTDMA,Areat0) to ffffffff=fix_profile(n,TempTDMA,Areat0) ant the model runs, but when I remove the entire line its doesn´t run!
this is the full code:
import numpy as np
from cmath import pi
np.set_printoptions(threshold=np.inf)
import pylab as plt
import math
from importfile import air,neb,wind,Z,z,Areat0,Areat1,T0
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#INPUT
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
RelativeHumidity = np.full((2600),80)
#------------------------------------------------------------------------------------------------------------------------------------
# Tri Diagonal Matrix Algorithm (Thomas algorithm) solver (source:https://gist.github.com/cbellei/8ab3ab8551b8dfc8b081c518ccd9ada9)
#-------------------------------------------------------------------------------------------------------------------------------------
def TDMAsolver(a, b, c, d):
nf = len(d)
ac, bc, cc, dc = map(np.array, (a, b, c, d))
for it in xrange(1, nf):
mc = ac[it-1]/bc[it-1]
bc[it] = bc[it] - mc*cc[it-1]
dc[it] = dc[it] - mc*dc[it-1]
xc = bc
xc[-1] = dc[-1]/bc[-1]
for il in xrange(nf-2, -1, -1):
xc[il] = (dc[il]-cc[il]*xc[il+1])/bc[il]
del bc, cc, dc
return xc
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# Clear Sky radiation (S.L.Dingman, 2012 - Physical Hydrology, 2nd Ed.)
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
def ClearSky(i, Lat, AirTemperature, RelativeHumidity):
Latitude_radians = (Lat/360)*2*pi
SolarConstant = 4.921 #MJ/m2hr
DustAttenuation = 0.05
OpticalAirMass = 3.6
AirT = AirTemperature
RH = RelativeHumidity
SurfaceAlbedo = 0.4
VapourPressure_ea = 0.611*np.exp(17.3*AirT/(AirT+237.3))*RH/100
DewPt = (np.log(VapourPressure_ea)+0.4926)/(0.0708-0.00421*np.log(VapourPressure_ea))
PrecipitableWater = 1.12*np.exp(0.0614*DewPt)
Tsa = np.exp((-0.124-0.0207*PrecipitableWater)+(-0.0682-0.0248*PrecipitableWater)*OpticalAirMass)
T = Tsa-DustAttenuation
Ts = np.exp((-0.0363-0.0084*PrecipitableWater)+(-0.0572-0.0173*PrecipitableWater)*OpticalAirMass)
gs = 1-Ts+DustAttenuation
DayAngle = 2*pi*(i-1)/365
Declination_degrees = (180/pi)*(0.006918-0.399912*np.cos(DayAngle)+0.070257*np.sin(DayAngle)-0.006758*np.cos(2*DayAngle)+0.000907*np.sin(2*DayAngle)-0.002697*np.cos(3*DayAngle)+0.00148*np.sin(3*DayAngle))
Declination_radians = (Declination_degrees/360)*2*pi
Eccentricity = 1.00011+0.034221*np.cos(DayAngle)+0.00128*np.sin(DayAngle)+0.000719*np.cos(2*DayAngle)+0.000077*np.sin(2*DayAngle)
Sunrise = -np.arccos(-np.tan(Latitude_radians)*np.tan(Declination_radians))/0.2618
Sunset = np.arccos(-np.tan(Latitude_radians)*np.tan(Declination_radians))/0.2618
DayLength = 2*Sunset
Extraterrestrial = 2*SolarConstant*Eccentricity*(np.cos(Declination_radians)*np.cos(Latitude_radians)*np.sin(0.2618*Sunset)/0.2618+np.sin(Declination_radians)*np.sin(Latitude_radians)*Sunset)#MJ/m2hr
Direct = Extraterrestrial*T
Diffuse = 0.5*gs*Extraterrestrial
Global = Direct+Diffuse
Backscatter = 0.5*gs*SurfaceAlbedo*Global
ClearSky = Global+Backscatter # MJ/m2day
ClearSkyRadiaton = ClearSky*11.575
return ClearSkyRadiaton
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# EQUILILBRIUM TEMPERATURE
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
def EquilibriumTemp(AirTemperature, RelativeHumidity, wind, ClearSkyRadiaton, WaterTemperature):
AirT_C = AirTemperature
AirT_F = AirT_C*1.8+32
WaterTemp_C = WaterTemperature
WindZ_ms = wind
WindZ_mph = WindZ_ms*2.23714
Wind2_mph = WindZ_mph*np.log(2/0.003)/np.log(10/0.003)
SCR_Wm2=ClearSkyRadiaton
SCR_BTU_FT2_DAY = SCR_Wm2*7.60796
RH = RelativeHumidity
VapourPressure_ea = 0.611*np.exp(17.3*AirT_C/(AirT_C+237.3))*RH/100
DewPt = (np.log(VapourPressure_ea)+0.4926)/(0.0708-0.00421*np.log(VapourPressure_ea))
DewPt_F = DewPt*1.8+32
Aconv = 7.60796
Bconv = 1.520411 #IF(CFW =2,1.520411,3.401062)
AFW = 9.2
BFW = 0.46
CFW = 2
ET = DewPt_F
TSTAR = (ET+DewPt_F)*0.5
BETA = 0.255-(8.5E-3*TSTAR)+(2.04E-4*TSTAR*TSTAR)
FW = Aconv*AFW+Bconv*BFW*Wind2_mph**CFW
CSHE = 15.7+(0.26+BETA)*FW
RA = 3.1872E-08*(AirT_F+459.67)**4
ETP = (SCR_BTU_FT2_DAY+RA-1801.0)/CSHE+(CSHE-15.7)*(0.26*AirT_F+BETA*DewPt_F)/(CSHE*(0.26+BETA))
j = 0
while (abs(ETP-ET) > 0.05 or j<10):
ET = ETP
TSTAR = (ET+DewPt_F)*0.5
BETA = 0.255-(8.5E-3*TSTAR)+(2.04E-4*TSTAR*TSTAR)
CSHE = 15.7+(0.26+BETA)*FW
ETP = (SCR_BTU_FT2_DAY+RA-1801.0)/CSHE+(CSHE-15.7)*(0.26*AirT_F+BETA*DewPt_F)/(CSHE*(0.26+BETA))
EquilibriumTemperature = (ET-32)*5/9
SurfaceHeatExchange = CSHE*0.23659
Qn = (EquilibriumTemperature-WaterTemp_C)*SurfaceHeatExchange
j+=1
return Qn
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# DEPTH OF THE THERMOCLINE (source:https://rdrr.io/cran/rLakeAnalyzer/src/R/thermo.depth.R)
# This function calculates the location of the thermocline from a temperature profile.
# It uses a special technique to estimate where the thermocline lies even between two temperature measurement depths, giving a potentially finer-scale estimate than usual techniques.
# @param wtr a numeric vector of water temperature in degrees C
# @param depths a numeric vector corresponding to the depths (in m) of the wtr measurements
# @param Smin Optional paramter defining minimum density gradient for thermocline
# @param seasonal a logical value indicating whether the seasonal thermocline should be returned. This is fed to thermo.depth, which is used as the starting point. The seasonal thermocline is defined as the deepest density gradient found in the profile. If \code{FALSE}, the depth of the maximum density gradient is used as the starting point.
# @param index Boolean value indicated if index of the thermocline depth, instead of the depth value, should be returned.
# @param mixed.cutoff A cutoff (deg C) where below this threshold, thermo.depth and meta.depths are not calculated (NaN is returned). Defaults to 1 deg C.
# @return Depth of thermocline. If no thermocline found, value is NaN.
#----------------------------------------------------------------------------------------------------------------------------------------
def find_peaks(data_in, thresh = 0.0): #Finds the local peaks in a vector. Checks the optionally supplied threshold for minimum height.
peaks = [thresh - 1]
for trip in zip(*[data_in[n:] for n in range(3)]):
if max(trip) == trip[1]:
peaks.append(trip[1])
else:
peaks.append(thresh - 1)
return [index for index, peak in enumerate(peaks) if peak > thresh]
def ThermoTemp (wtr, depths, Smin=0.1, seasonal=True, index=False, mixed_cutoff=1):
rhoVar = np.zeros(len(depths)) #23
for i in range(len(depths)): #0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
rhoVar[i]=(1000*(1-(wtr[i]+288.9414)*(wtr[i]-3.9863)**2/(508929.2*(wtr[i]+68.12963))))
#Calculate the first derivate of density
drho_dz = np.zeros(len(depths)-1)
for i in range(len(depths)-1): #0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21
drho_dz[i] = ( rhoVar[i+1]-rhoVar[i] )/( depths[i+1] - depths[i] )
#look for two distinct maximum slopes, lower one assumed to be seasonal
thermoInd = np.argmax(drho_dz) # return index of max slope 9
mDrhoZ = drho_dz[thermoInd] #return max density value 0.99
thermoD = np.mean(depths[(thermoInd):(thermoInd+2)])# mean value depth (entre 7 e 8)
# 9:11
dRhoPerc = 0.15
numDepths = len(depths)
#23
if thermoInd > 0 and thermoInd < (numDepths):
Sdn = -(depths[thermoInd+1] - depths[thermoInd])/(drho_dz[thermoInd+1] - drho_dz[thermoInd])
Sup = (depths[thermoInd]-depths[thermoInd-1])/(drho_dz[thermoInd]-drho_dz[thermoInd-1])
upD = depths[thermoInd]
dnD = depths[thermoInd+1]
if np.isinf(Sup) or np.isinf(Sdn):
thermoD = dnD*(Sdn/(Sdn+Sup))+upD*(Sup/(Sdn+Sup))
dRhoCut = np.max([dRhoPerc*mDrhoZ,Smin])
locs = find_peaks(drho_dz, dRhoCut)
pks = drho_dz[locs]
if (len(pks)==0):
SthermoD = thermoD
SthermoInd = thermoInd
else:
mDrhoZ = pks[len(pks)-1]
SthermoInd = locs[len(pks)-1] #returns 13 instead of 14
if (SthermoInd > (thermoInd + 1)):
SthermoD = np.mean(depths[(SthermoInd):(SthermoInd+2)])
if (SthermoInd > 0 and SthermoInd < (numDepths)):
Sdn = -(depths[SthermoInd+1] - depths[SthermoInd])/(drho_dz[SthermoInd+1] - drho_dz[SthermoInd])#4.35
Sup = (depths[SthermoInd] - depths[SthermoInd-1])/(drho_dz[SthermoInd] - drho_dz[SthermoInd-1])#6.34
upD = depths[SthermoInd]#11
dnD = depths[SthermoInd+1] #12
if np.isinf(Sup) or np.isinf(Sdn):
SthermoD = dnD*(Sdn/(Sdn+Sup))+upD*(Sup/(Sdn+Sup))
else:
SthermoD = thermoD
SthermoInd = thermoInd
if SthermoD < thermoD:
SthermoD = thermoD
SthermoInd = thermoInd
#Ok, which output was requested. Index or value, seasonal or non-seasonal
if(index):
if(seasonal):
return(SthermoInd)
else:
return(thermoInd)
else:
if(seasonal):
return(SthermoD)
else:
return(thermoD)
#-------------------------------------------------------------------------------------------------------------------------------------
#EDDY DIFFUSIVITY
#-------------------------------------------------------------------------------------------------------------------------------------
def Keddy(T0,z,v, Areat0):
g=9.8
#Temperature gradient
Gtemp=np.zeros(len(T0))
for i in range(len(T0)-1): #0-39 (40)
Gtemp[i]=(T0[i+1]-T0[i])/(z[i+1]-z[i])
Gtemp[len(T0)-1]=Gtemp[len(T0)-2]
#Thermal expansion of water
Texp=np.zeros(len(T0))
for i in range(len(T0)-1):
if T0[i]<=11:
Texp[i]=(1.43*10**-5)*(T0[i])-(0.54*10**-4)
else:
Texp[i]=(1.41*10**-5)*(T0[i])-(0.209*10**-4)
#Friction velocity
w=1.2*(10**-3)*v
c=0.1
d=0.1
#Eddy diffusivity in the absence of stratification, m2/s
Kh0=c*w
#Richardson number
Ri=np.zeros(len(T0))
for i in range(len(T0)):
Ri[i]=-((Texp[i]*g*(z[i]**2.0))/(w**2.0))*(Gtemp[i])
#Eddy diffusivity for the vertical transport of heat
KH=np.zeros(len(T0))
for i in range(len(T0)):
KH[i]=Kh0*(1+d*Ri[i])**-1
#KH[1:]=np.where(KH[1:] <=0.00001, 0.00001, KH[1:])
Kdiffusivity=[a*b for a,b in zip(Areat0,KH)]
index_thermocline = ThermoTemp (T0, z, Smin=0.1, seasonal=False, index=True, mixed_cutoff=1)
for n, i in enumerate(Kdiffusivity):
if n > index_thermocline:
Kdiffusivity[n]=Kdiffusivity[index_thermocline]
return Kdiffusivity
#-------------------------------------------------------------------------------------------------------------------------------------
#FIX PROFILE
#-------------------------------------------------------------------------------------------------------------------------------------
def fix_profile(n,T, area):
var1=range(1,n)
var1.reverse()
for i in var1:
for j in range(n-1):
if T[i]>T[j]:
change_profile(T,i,j,area,n)
break
return T
def change_profile(T,i,inst,area,n):
jmin=inst-1
if jmin<0:
jmin=0
min=1
jmin0=jmin
else:
min=0
jmin0=inst
jmax=i+1
if jmax>n:
jmax=n
max=1
jmax0=jmax
else:
max=0
jmax=i
A=0.0
B=0.0
for j in range(jmin,jmax+1):
A+=T[j]*area[j]
B+=area[j]
Tconst=A/B
for j in range(jmin,jmax+1):
T[j]=Tconst
#-------------------------------------------------------------------------------------------------------------------------------------
#Crank Nicolson scheme
#-------------------------------------------------------------------------------------------------------------------------------------
#Simulation time period (days)
N=2556
#2556
#Latitude (degrees)
Lat=38.0
#-------------------------------------------------------------------------------------------------------------------------------------
#Run Clear Sky Radiation
ClearSkyRadiation = np.zeros(N)
I = np.linspace(1,N,N)
for i in xrange(N):
ClearSkyRadiation[i] = ClearSky(i, Lat, air[i], RelativeHumidity[i])
plt.plot(I,ClearSkyRadiation)
plt.show()
#-------------------------------------------------------------------------------------------------------------------------------------
Nlayers=41 #41
#Space, m
DZ=2.0
#Water temperature
TempLake=np.zeros((N+1,Nlayers))
#K=np.zeros((N+1,Nlayers))
K=np.full((N+1,Nlayers), 0.0000)
# Initial condition , C
TempLake[0]=T0
#time interval, seconds, s
DT=86400
#Water density, kg/m3
DH2O=1000.0
#Water specific Heat j/kg C
Cp=4186
s=DT/(2*DZ**2.0)
#Initializing coefficients np.arrays
a=np.zeros((N,Nlayers-1)) #40
b=np.zeros((N,Nlayers)) #41
c=np.zeros((N,Nlayers-1))
d=np.zeros((N,Nlayers))
alfa = np.zeros(Nlayers)#41
Radiation = np.zeros(N)
Thermocline_Depth = np.zeros(N)
for i in xrange(Nlayers):
alfa[i]=1.0/(Areat0[i]+Areat0[i])
for i in xrange(1,N+1):
I=np.linspace(1,N,N)
Radiation[i-1] = EquilibriumTemp(air[i-1], RelativeHumidity[i-1], wind[i-1], ClearSkyRadiation[i-1], TempLake[i-1][0])
Thermocline_Depth[i-1] = ThermoTemp(TempLake[i-1], z, Smin=0.1, seasonal=True, index=False, mixed_cutoff=1)
K[i-1]=Keddy(TempLake[i-1],z,wind[i-1],Areat0)
K[i]=Keddy(TempLake[i-1],z,wind[i-1],Areat0)
#b0, c0, d0
b[i-1][0]=1+alfa[0]*s*(0.0+2.0*K[i][0]+K[i][1])
c[i-1][0]=-alfa[0]*s*(0.0+2.0*K[i][0]+K[i][1])
d[i-1][0]=((1.0-alfa[0]*s*(0.0+2.0*K[i-1][0]+K[i-1][1]))*TempLake[i-1][0])+(alfa[0]*s*(0.0+2.0*K[i-1][0]+K[i-1][1])*TempLake[i-1][1])+alfa[0]*s*(0.0+K[i-1][0])*((2*Radiation[i-1]*DZ)/(Cp*DH2O*(K[i-1][0]/Areat0[0])))+alfa[0]*s*(0.0+K[i][0])*((2.0*Radiation[i-1]*DZ)/(DH2O*Cp*(K[i][0]/Areat0[0])))
#Bottom
#an, bn, dn
a[i-1][-1]=-alfa[-1]*s*(K[i][-2]+2.0*K[i][-1]+0.0)
b[i-1][-1]=1+alfa[-1]*s*(K[i][-2]+2.0*K[i][-1]+0.0)
d[i-1][-1]=alfa[-1]*s*TempLake[i-1][-2]*(K[i-1][-2]+2.0*K[i-1][-1]+0.0)+(1-alfa[-1]*s*(K[i-1][-2]+2*K[i-1][-1]+0.0))*TempLake[i-1][-1] # 0,1,2,3,4,5,6,7,8,9
#ai, bi, ci, di
for j in xrange(1,Nlayers-1):# 40
a[i-1][j-1]=-alfa[j]*s*(K[i][j-1]+K[i][j]) # 40
b[i-1][j]=1.0+alfa[j]*s*(K[i][j-1]+2.0*K[i][j]+K[i][j+1])
c[i-1][j]=-alfa[j]*s*(K[i][j]+K[i][j+1])
d[i-1][j]=alfa[j]*s*(K[i-1][j]+K[i-1][j-1])*TempLake[i-1][j-1]+alfa[j]*s*(K[i-1][j+1]+K[i-1][j])*TempLake[i-1][j+1]+(1-alfa[j]*s*(K[i-1][j-1]+2.0*K[i-1][j]+K[i-1][j+1]))*TempLake[i-1][j]
TempTDMA=TDMAsolver(a[i-1], b[i-1], c[i-1], d[i-1])
n=len(TempTDMA)
CANT_REMOVE_THIS_LINE=fix_profile(n,TempTDMA,Areat0)
TempLake[i]=TempTDMA
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#OUTPUT
#-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Kout=np.full((N+1,Nlayers), 0.0000)
for i in xrange(1,N+1):
Kout[i] = [a/b for a,b in zip(K[i],Areat0)]
np.savetxt('Kdifussivity.out', Kout, delimiter=',')
plt.plot(I,Radiation)
plt.show()
plt.plot(I,Thermocline_Depth)
plt.show()
print K
Z=TempLake
X,Y=np.meshgrid(range(Z.shape[0]+1),range(Z.shape[1]+1))
plt.figure(1)
plt.subplot(211)
im = plt.pcolormesh(X,Y,Z.transpose(), cmap='jet')
ax = plt.gca()
ax.set_ylim(ax.get_ylim()[::-1])
plt.colorbar(im, orientation='horizontal')
plt.ylabel('Profundidade, m')
plt.subplot(212)
Zout=Z.transpose()
plt.plot(np.linspace(1,N+1,N+1), Zout[0], lw=2)
plt.xlabel('Dias')
plt.ylabel('Temperatura, C')
plt.show()
|