I am required to plot the orbits of the planets around the sun. So far I have been able to plot the circular orbits from my code below. However, I am not sure how to manipulate this to make the orbits their real-life elliptical shape. I have all the eccentricity values for the planets but don't know where they fit into my code (if at all?).
Eccentricities:
Mercury = 0.205
Venus = 0.007
Earth = 0.017
Mars = 0.094
Jupiter = 0.049
Saturn = 0.057
Uranus = 0.046
Neptune = 0.011
Eccentricities:
Mercury = 0.205
Venus = 0.007
Earth = 0.017
Mars = 0.094
Jupiter = 0.049
Saturn = 0.057
Uranus = 0.046
Neptune = 0.011
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
#--------------------------PLANETARY MOTION--------------------------# #Gravitation is a conservative fore: E = T + V #The total energy of the system can be expressed as two coupled 1st order ODEs: #dr/dt = v Where v is the velocity #dv/dt = F/m Where F is the force and m is the mass #F = (G*m1*m2)/(r**2) m1 and m2 are the mass of the sun and mars respectively #Import necessary libraries: import numpy as np import matplotlib.pyplot as plt #Radii of all planets in Astronomical Units: rMer = 0.387 # Radius of Mercury in AU rVen = 0.723 # Radius of Venus in AU rEar = 1.00 # Radius of Earth in AU rMar = 1.524 # Radius of Mars in AU rJup = 5.203 # Radius of Jupiter in AU rSat = 9.537 # Radius of Saturn in AU rUra = 19.191 # Radius of Uranus in AU rNep = 30.069 # Radius of Neptune in AU #----------INNER PLANETS (Mercury-->Mars)----------# #Set parameters: N = 687 # Mars days in a year dt = 1.00 / N # Time Step: Fractions of a year - 1 Mars day (i.e. 1/687) mu = 4 * np.pi * * 2 # mu=4pi^2 is the Gravitational Parameter: mu = GM where G=6.67e-11 is the Universal Gravitational Constant and M is the mass of the body #-----EARTH-----# #Create an array, for all variables, of size N with all entries equal to zero: xEar = np.zeros((N,)) yEar = np.zeros((N,)) vxEar = np.zeros((N,)) vyEar = np.zeros((N,)) # Initial Conditions: xEar[ 0 ] = rEar # (x0 = r, y0 = 0) in AU vyEar[ 0 ] = np.sqrt(mu / rEar) # (vx0 = 0, v_y0 = sqrt(mu/r)) AU/yr #Implement Verlet Algorithm: for k in range ( 0 ,N - 1 ): vxEar[k + 1 ] = vxEar[k] - (mu * xEar[k]) / (rEar * * 3 ) * dt xEar [k + 1 ] = xEar[k] + vxEar[k + 1 ] * dt vyEar[k + 1 ] = vyEar[k] - (mu * yEar[k]) / (rEar * * 3 ) * dt yEar [k + 1 ] = yEar[k] + vyEar[k + 1 ] * dt #Plot: plt.plot(xEar, yEar, 'go' ) plt.title ( 'Circular Orbit of Earth' ) plt.xlabel ( 'x' ) plt.ylabel ( 'y' ) plt.axis( 'equal' ) plt.show() #-----MERCURY-----# #Create an array, for all variables, of size N with all entries equal to zero: xMer = np.zeros((N,)) yMer = np.zeros((N,)) vxMer = np.zeros((N,)) vyMer = np.zeros((N,)) # Initial Conditions: xMer[ 0 ] = rMer # (x0 = r, y0 = 0) in AU vyMer[ 0 ] = np.sqrt(mu / rMer) # (v_x0 = 0, v_y0 = sqrt(mu/r)) AU/yr #Implement Verlet Algorithm: for k in range ( 0 ,N - 1 ): vxMer[k + 1 ] = vxMer[k] - (mu * xMer[k]) / (rMer * * 3 ) * dt xMer[k + 1 ] = xMer[k] + vxMer[k + 1 ] * dt vyMer[k + 1 ] = vyMer[k] - (mu * yMer[k]) / (rMer * * 3 ) * dt yMer[k + 1 ] = yMer[k] + vyMer[k + 1 ] * dt #-----VENUS-----# #Create an array, for all variables, of size N with all entries equal to zero: xVen = np.zeros((N,)) yVen = np.zeros((N,)) vxVen = np.zeros((N,)) vyVen = np.zeros((N,)) # Initial Conditions: xVen[ 0 ] = rVen # (x0 = r, y0 = 0) in AU vyVen[ 0 ] = np.sqrt(mu / rVen) # (vx0 = 0, vy0 = sqrt(mu/r)) AU/yr #Implement Verlet Algorithm: for k in range ( 0 ,N - 1 ): vxVen[k + 1 ] = vxVen[k] - (mu * xVen[k]) / (rVen * * 3 ) * dt xVen[k + 1 ] = xVen[k] + vxVen[k + 1 ] * dt vyVen[k + 1 ] = vyVen[k] - (mu * yVen[k]) / (rVen * * 3 ) * dt yVen[k + 1 ] = yVen[k] + vyVen[k + 1 ] * dt #-----MARS-----# #Create an array, for all variables, of size N with all entries equal to zero: xMar = np.zeros((N,)) yMar = np.zeros((N,)) vxMar = np.zeros((N,)) vyMar = np.zeros((N,)) # Initial Conditions: xMar[ 0 ] = rMar # (x0 = r, y0 = 0) in AU vyMar[ 0 ] = np.sqrt(mu / rMar) # (vx0 = 0, vy0 = sqrt(mu/r)) AU/yr #Implement Verlet Algorithm: for k in range ( 0 ,N - 1 ): vxMar[k + 1 ] = vxMar[k] - (mu * xMar[k]) / (rMar * * 3 ) * dt xMar[k + 1 ] = xMar[k] + vxMar[k + 1 ] * dt vyMar[k + 1 ] = vyMar[k] - (mu * yMar[k]) / (rMar * * 3 ) * dt yMar[k + 1 ] = yMar[k] + vyMar[k + 1 ] * dt #Plot Inner Planets: plt.plot(xMer, yMer, 'ro' , xVen, yVen, 'yo' , xEar, yEar, 'go' , xMar, yMar, 'bo' ) plt.scatter( 0 , 0 , 'r' ) plt.title ( 'Circular Orbits of Inner Planets' ) plt.xlabel ( 'x' ) plt.ylabel ( 'y' ) plt.axis( 'equal' ) plt.show() #----------OUTER PLANETS (Jupiter-->Neptune)----------# #Set parameters: N = 59800 # Neptune days in a year dt = 1.00 / N # Time Step: Fractions of a year - 1 Neptune day (i.e. 1/687) mu = 4 * np.pi * * 2 # mu=4pi^2 is the Gravitational Parameter: mu = GM where G=6.67e-11 is the Universal Gravitational Constant and M is the mass of the body #-----JUPITER-----# #Create an array, for all variables, of size N with all entries equal to zero: xJup = np.zeros((N,)) yJup = np.zeros((N,)) vxJup = np.zeros((N,)) vyJup = np.zeros((N,)) # Initial Conditions: xJup[ 0 ] = rJup # (x0 = r, y0 = 0) in AU vyJup[ 0 ] = np.sqrt(mu / rJup) # (vx0 = 0, vy0 = sqrt(mu/r)) AU/yr #Implement Verlet Algorithm: for k in range ( 0 ,N - 1 ): vxJup[k + 1 ] = vxJup[k] - (mu * xJup[k]) / (rJup * * 3 ) * dt xJup[k + 1 ] = xJup[k] + vxJup[k + 1 ] * dt vyJup[k + 1 ] = vyJup[k] - (mu * yJup[k]) / (rJup * * 3 ) * dt yJup[k + 1 ] = yJup[k] + vyJup[k + 1 ] * dt #-----SATURN-----# #Create an array, for all variables, of size N with all entries equal to zero: xSat = np.zeros((N,)) ySat = np.zeros((N,)) vxSat = np.zeros((N,)) vySat = np.zeros((N,)) # Initial Conditions: xSat[ 0 ] = rSat # (x0 = r, y0 = 0) in AU vySat[ 0 ] = np.sqrt(mu / rSat) # (vx0 = 0, vy0 = sqrt(mu/r)) AU/yr #Implement Verlet Algorithm: for k in range ( 0 ,N - 1 ): vxSat[k + 1 ] = vxSat[k] - (mu * xSat[k]) / (rSat * * 3 ) * dt xSat[k + 1 ] = xSat[k] + vxSat[k + 1 ] * dt vySat[k + 1 ] = vySat[k] - (mu * ySat[k]) / (rSat * * 3 ) * dt ySat[k + 1 ] = ySat[k] + vySat[k + 1 ] * dt #-----URANUS-----# #Create an array, for all variables, of size N with all entries equal to zero: xUra = np.zeros((N,)) yUra = np.zeros((N,)) vxUra = np.zeros((N,)) vyUra = np.zeros((N,)) # Initial Conditions: xUra[ 0 ] = rUra # (x0 = r, y0 = 0) in AU vyUra[ 0 ] = np.sqrt(mu / rUra) # (vx0 = 0, vy0 = sqrt(mu/r)) AU/yr #Implement Verlet Algorithm: for k in range ( 0 ,N - 1 ): vxUra[k + 1 ] = vxUra[k] - (mu * xUra[k]) / (rUra * * 3 ) * dt xUra[k + 1 ] = xUra[k] + vxUra[k + 1 ] * dt vyUra[k + 1 ] = vyUra[k] - (mu * yUra[k]) / (rUra * * 3 ) * dt yUra[k + 1 ] = yUra[k] + vyUra[k + 1 ] * dt #-----NEPTUNE-----# #Create an array, for all variables, of size N with all entries equal to zero: xNep = np.zeros((N,)) yNep = np.zeros((N,)) vxNep = np.zeros((N,)) vyNep = np.zeros((N,)) # Initial Conditions: xNep[ 0 ] = rNep # (x0 = r, y0 = 0) in AU vyNep[ 0 ] = np.sqrt(mu / rNep) # (vx0 = 0, vy0 = sqrt(mu/r)) AU/yr #Implement Verlet Algorithm: for k in range ( 0 ,N - 1 ): vxNep[k + 1 ] = vxNep[k] - (mu * xNep[k]) / (rNep * * 3 ) * dt xNep[k + 1 ] = xNep[k] + vxNep[k + 1 ] * dt vyNep[k + 1 ] = vyNep[k] - (mu * yNep[k]) / (rNep * * 3 ) * dt yNep[k + 1 ] = yNep[k] + vyNep[k + 1 ] * dt #Plot Outter Planets: plt.plot(xJup, yJup, 'ro' , xSat, ySat, 'yo' , xUra, yUra, 'bo' , xNep, yNep, 'ro' ) plt.scatter( 0 , 0 , 'r' ) plt.title ( 'Circular Orbits of Outer Planets' ) plt.xlabel ( 'x' ) plt.ylabel ( 'y' ) plt.axis( 'equal' ) plt.show() |