May-27-2019, 05:22 PM
Trawling the interwebs, I have stumbled across a 101 digit highly composite number. It's a beast to say to least
10334475851656087128243643125471284565310588797552748096314114788137761206785997576812685774304768000
Online websites only calculate up to 64 digits maximum
I am wanting it's factorization in order to work out it's number of divisors and to simply grasp the structure/patterns behind large highly composite numbers
After a little debugging, I managed to get this program working:-
result was:-
2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222871414146316299.0
Which i worked out as: 2^283 and whatever 871414146316299.0 means
This does not seem correct. The biggest highly composite number calculable on number empire is
https://www.numberempire.com/963761198400
Which follows this factorization pattern
2 * 2 * 2 * 2 * 2 * 2 * 3 * 3 * 3 * 3 * 5 * 5
2^6 * 3^4 * 5^2
sextuplet, quartet, duo
Then simply "nails" the subsequent "lone prime" numbers in prime number sequence, doubling the divisor count of 105 from integer 129600 every new "lone prime"
Lone prime meaning to no power (no exponent) in the factorization
https://www.numberempire.com/129600
64 tetrahedron grid noticed which is pretty neat(2^6=64)
Thanks all,
Kev
10334475851656087128243643125471284565310588797552748096314114788137761206785997576812685774304768000
Online websites only calculate up to 64 digits maximum
I am wanting it's factorization in order to work out it's number of divisors and to simply grasp the structure/patterns behind large highly composite numbers
After a little debugging, I managed to get this program working:-
# Python program to print prime factors import math # A function to print all prime factors of # a given number n def primeFactors(n): # Print the number of two's that divide n while n % 2 == 0: print (2,end="") n = n / 2 # n must be odd at this point # so a skip of 2 ( i = i + 2) can be used for i in range(3,int(math.sqrt(n))+1,2): # while i divides n , print i ad divide n while n % i== 0: print (i,end=""), n = n / i # Condition if n is a prime # number greater than 2 if n > 2: print (n) # Driver Program to test above function n = 10334475851656087128243643125471284565310588797552748096314114788137761206785997576812685774304768000 primeFactors(n) # This code is contributed by Harshit Agrawalhttps://www.geeksforgeeks.org/print-all-prime-factors-of-a-given-number/
result was:-
2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222871414146316299.0
Which i worked out as: 2^283 and whatever 871414146316299.0 means
This does not seem correct. The biggest highly composite number calculable on number empire is
https://www.numberempire.com/963761198400
Which follows this factorization pattern
2 * 2 * 2 * 2 * 2 * 2 * 3 * 3 * 3 * 3 * 5 * 5
2^6 * 3^4 * 5^2
sextuplet, quartet, duo
Then simply "nails" the subsequent "lone prime" numbers in prime number sequence, doubling the divisor count of 105 from integer 129600 every new "lone prime"
Lone prime meaning to no power (no exponent) in the factorization
https://www.numberempire.com/129600
64 tetrahedron grid noticed which is pretty neat(2^6=64)
Thanks all,
Kev
