Hi,
I want to iterate through the "Pandas DataFrame" rows and while the "last_day <=day_set".
Condition1: Iterate over the rows of the first column.
sub_condition: on each iteration, check and break the iteration if day_set<=days_last.
I use below code, but not complete,
Kindly someone help.
input data:
I want to iterate through the "Pandas DataFrame" rows and while the "last_day <=day_set".
Condition1: Iterate over the rows of the first column.
sub_condition: on each iteration, check and break the iteration if day_set<=days_last.
I use below code, but not complete,
Kindly someone help.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
import pandas as pd import csv input = r 'D:\PythonCodes\correctiofactordata.csv' df = pd.read_csv( input ) increment = 3 prev_day = 0 day_set = 5 days_last = df[ - 1 :][ 'Days_elapsed' ] for i, row in df.iterrows(): data_catch = df.loc[(df[ 'Days_elapsed' ] > = prev_day) & (df[ 'Days_elapsed' ] < = day_set)] if ((data_catch.shape[ 0 ])> 0 ): print ( 'Enough data' ) else : print ( 'not enough data' ) print (prev_day), print (day_set) prev_day + = 5 day_set + = 5 print ( '-------------------' ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
Time_golden Golden is_golden Days_elapsed Factor 20 - 03 - 2019 10 : 24 98.6 golden 0.0 1.0 20 - 03 - 2019 11 : 10 97.0 golden 0.15 1.3 20 - 03 - 2019 13 : 13 96.0 golden 0.53 1.5 21 - 03 - 2019 13 : 43 95.0 golden 1.03 0.95 23 - 03 - 2019 10 : 37 94.6 golden 1.2 0.96 23 - 03 - 2019 18 : 43 93.0 golden 1.6 1.0 24 - 03 - 2019 22 : 19 92.0 golden 2.53 1.3 25 - 03 - 2019 09 : 23 90.0 golden 2.69 1.5 26 - 03 - 2019 11 : 42 89.0 golden 2.9 0.95 27 - 03 - 2019 20 : 32 87.3 golden 3.0 0.96 27 - 03 - 2019 23 : 42 86.0 golden 3.21 1.5 28 - 03 - 2019 00 : 52 84.0 golden 3.62 0.95 28 - 03 - 2019 03 : 40 82.3 golden 3.96 0.96 21 - 03 - 2019 10 : 34 83.0 notgolden 4.23 1.0 24 - 03 - 2019 16 : 37 80.0 notgolden 5.2 1.3 24 - 03 - 2019 21 : 42 73.0 notgolden 5.6 0.95 27 - 03 - 2019 21 : 02 60.0 notgolden 5.69 0.96 28 - 03 - 2019 02 : 42 53.0 notgolden 6.1 1.0 20 - 03 - 2019 10 : 24 98.6 golden 6.66 1.3 20 - 03 - 2019 11 : 10 97.0 golden 6.987 1.5 20 - 03 - 2019 13 : 13 96.0 golden 7.03 0.95 21 - 03 - 2019 13 : 43 95.0 golden 7.0236 0.96 23 - 03 - 2019 10 : 37 94.6 golden 7.26 1.5 23 - 03 - 2019 18 : 43 93.0 golden 8.5 0.95 24 - 03 - 2019 22 : 19 92.0 golden 8.62 0.96 25 - 03 - 2019 09 : 23 90.0 golden 9.6 1.0 26 - 03 - 2019 11 : 42 89.0 golden 11.02 1.3 27 - 03 - 2019 20 : 32 87.3 golden 11.63 1.3 27 - 03 - 2019 23 : 42 86.0 golden 12.35 1.0 |