Python Forum
[neural netrowks]How do i resume training once i have saved the model
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
[neural netrowks]How do i resume training once i have saved the model
#1
I have a model that I've trained for 75 epochs. saved the model with model.save(). The code for training is

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, load_model
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
 
 
# dimensions of our images.
img_width, img_height = 320, 240
 
train_data_dir = 'dataset/Training_set'
validation_data_dir = 'dataset/Test_set'
nb_train_samples = 4000  #total
nb_validation_samples = 1000  # total
epochs = 25
batch_size = 10
 
if K.image_data_format() == 'channels_first':
    input_shape = (3, img_width, img_height)
else:
    input_shape = (img_width, img_height, 3)
 
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
 
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
 
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
 
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
 
model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])
 
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)
 
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
 
train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')
 
validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')
 
model.fit_generator(
    train_generator,
    steps_per_epoch=nb_train_samples // batch_size,
    epochs=epochs,
    validation_data=validation_generator,
    validation_steps=5)
 
model.save('model1.h5')
How do i restart training ? just run this code again ? or do i need to make some changes ? and what are those changes?
Reply
#2
You'll need to load the model with model.load('model1.h5') and then call fit_generator again.
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Sample training small model AndrzejB 3 2,064 Mar-22-2023, 07:37 PM
Last Post: jefsummers
  Training a model to identify specific SMS types and extract relevant data? lord_of_cinder 0 1,600 Oct-10-2022, 04:35 AM
Last Post: lord_of_cinder
  Is it normal so much time training for Training Custom Object Detector?? hobbyist 2 3,765 May-31-2022, 08:55 AM
Last Post: aserikova
  What is the best approach to training a final model after cross validation? amjass12 0 2,394 Jul-21-2021, 10:15 AM
Last Post: amjass12
  stacked autoencoder training JohnMarie 0 3,151 Feb-24-2019, 12:23 AM
Last Post: JohnMarie

Forum Jump:

User Panel Messages

Announcements
Announcement #1 8/1/2020
Announcement #2 8/2/2020
Announcement #3 8/6/2020