Python Forum
3D animation of sprinkler
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
3D animation of sprinkler
#1
Hi,
I am trying to animate/simulate a sprinkler. I tried it in 2D, and got the output I wanted (moving points, iterative creation of points/droplets, hitting the ground and stopping).
I thought changing it to 3D would not be an issue, however I am only getting a single stationary point as my output on the 3D graph. The point is located at the starting position of (0.0, 0.0, 0.0). I think the problem may by with the update function, where set_offsets may only be for a 2D graph? I looked through the matplotlib documentation, and couldn't find anything similar for a 3D plot.
https://matplotlib.org/api/_as_gen/mpl_t...s3d.Axes3D

Going from 2D to 3D, I changed the position, velocity, and acceleration from 1x2 arrays ro 1x3 arrays. I also changed the max positions from maxs[1] to maxs[2], etc.

Is there an error in my code/logic or is the problem with the update function?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import matplotlib
import matplotlib.pyplot as plt
from matplotlib import animation
import numpy as np
from math import sin, cos
from mpl_toolkits.mplot3d import Axes3D
import random
 
#Parameters
rho = 1.225
c = 0.5
v0 = 50
g = 9.81
 
#Timing
tmax = 10
nframes = 100
time = np.linspace(0,tmax, nframes)
dt = time[1]-time[0]
 
#Waterdroplets
ndrops = 100
 
#Positioning
maxs = [0.0, 0.0, 0.0]
rmax = [0.0008, 0.0065]
 
#Droplet sizing
theta = np.radians(np.random.normal(37, 8, 80))
phi = np.radians(np.random.normal(3, 1.07, 80))
radii = np.random.normal(0.004, 0.001, 20)
 
class drop:
     
    def __init__(self,pos,vel,r):
        self.pos = pos
        self.vel = vel
        self.r = r
 
class sprinkler:
     
    def __init__(self):
        self.fig = plt.figure()
        self.ax = self.fig.add_subplot(111, projection = '3d')
        self.drops = [None]*ndrops    # creates empty list of length ndrops
        self.maxt = 0.0
         
        #Find the maximum flight time for each droplet
        #and the maximum distance the droplets will travel
        theta = np.radians(np.random.normal(37, 8, 80))
        phi = np.radians(np.random.normal(3, 1.07, 80))
        radii = np.random.normal(0.004, 0.001, 80)   
         
        for i in range(len(phi)):
            m = [drop([0.0, 0.1, 0.1], [v0*cos(theta[i])*cos(phi[i]),
                                        v0*cos(theta[i])*sin(theta[i]),
                                        v0*sin(theta[i])],0.0008),
                 drop([0.0, 0.1, 0.1], [v0*cos(theta[i])*cos(phi[i]),
                                       v0*cos(theta[i])*sin(theta[i]),
                                       v0*sin(theta[i])],0.0065)]
            for d in m:
                t = 0.0
                coef = -0.5*c*np.pi*d.r**2*rho
                mass = 4/3*np.pi*d.r**3*1000
                while d.pos[2] > 0:
                    a = np.power(d.vel, 2) * coef * np.sign(d.vel)/mass
                    a[2] -= g
                    d.pos += (d.vel + a * dt) * dt
                    d.vel += a * dt
                    t += dt
                    if d.pos[2] > maxs[2]:
                        maxs[2] = d.pos[2]                   
                    if d.pos[1] > maxs[1]:
                        maxs[1] = d.pos[1]
                    if d.pos[0] > maxs[0]:
                        maxs[0] = d.pos[0]
                    if d.pos[2] < 0.0:
                        if t > self.maxt:
                            self.maxt = t
                        break
        print('Max time is:',self.maxt)
        print('Max positions are:', maxs)
         
        #create initial droplets
         
        for ii in range(ndrops):
            phiang = random.randint(0,len(phi)-1)
            thetang = random.randint(0,len(theta)-1)
            rad = random.randint(0,len(radii)-1)
             
            self.drops[ii] = drop([0.0, 0.0, 0.1],
                                 [v0*cos(theta[thetang])*cos(phi[phiang]),
                                  v0*cos(theta[thetang])*sin(phi[phiang]),
                                  v0*sin(theta[thetang])],
                                  radii[random.randint(0,len(radii)-1)])
        #initiate animation
        ani = animation.FuncAnimation(self.fig, self.update, init_func = self.setup,
                                          interval = 200, frames = nframes)
        ani.save('Sprinkler.mp4', fps = 20, extra_args=['-vcodec', 'libx264'])
        plt.show()
     
    #Setup is used to initiate the 3D axis and plot
    def setup(self):
        self.scat = self.ax.scatter([d.pos[0] for d in self.drops],
                                    [d.pos[1] for d in self.drops],
                                    [d.pos[2] for d in self.drops],
                                    'b.')
             
        self.ax.set_xlim(-1, 100)
        self.ax.set_ylim(-1, 100)
        self.ax.set_zlim(0, 50)
        self.ax.set_xlabel('X Distance')
        self.ax.set_ylabel('Y Distance')
        self.ax.set_zlabel('Height')
             
        return self.scat
     
    #Update function updates the animation each frame.
     
    def update(self, frame):
        if time[frame] <(tmax-self.maxt*1.1):
            self.create(ndrops)
        self.step()
        #offset moves each point along accoring to the step function
        self.scat.set_offsets([[d.pos[0] for d in self.drops],
                              [d.pos[1] for d in self.drops],
                              [d.pos[2] for d in self.drops]])
        return self.scat,
      
    #New droplets are created at each frame to have iterative droplets coming from the sprinkler
    def create(self, i):
        for l in range(i):
            phiang = random.randint(0,len(phi)-1)
            thetang = random.randint(0,len(theta)-1)
            rad = random.randint(0,len(radii)-1)
            self.drops.append(drop([0.0, 0.0, 0.0],
                                   [v0*cos(theta[thetang])*cos(phi[phiang]),
                                    v0*cos(theta[thetang])*sin(phi[phiang]),
                                    v0*sin(theta[thetang])],
                                   radii[rad]))
     
    #step function moves each droplet along at each interval dt        
    def step(self):
         
        for x in range(len(self.drops)):
            coef = -0.5*c*np.pi*self.drops[x].r**2*rho  #drag force coefficient
            mass = 4/3*np.pi*self.drops[x].r**3*1000    #mass of droplet
            a = np.power(self.drops[x].vel,2) * coef * np.sign(self.drops[x].vel)/mass  #acceleration
            a[2] = a[2]-g
                 
            self.drops[x].pos += np.array(self.drops[x].vel)*dt +0.5*a*dt**2
            self.drops[x].vel += a*dt
            #When droplet hits ground, it stops moving
            if self.drops[x].pos[2] < 0.0:
                self.drops[x].pos[2] = 0.0
                self.drops[x].vel = [0.0, 0.0, 0.0]
Reply


Forum Jump:

User Panel Messages

Announcements
Announcement #1 8/1/2020
Announcement #2 8/2/2020
Announcement #3 8/6/2020