May-23-2020, 12:11 AM
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
fig = plt.figure() # create figure ax0 = fig.add_subplot( 1 , 2 , 1 ) # add subplot 1 (1 row, 2 columns, first plot) ax1 = fig.add_subplot( 1 , 2 , 2 ) # add subplot 2 (1 row, 2 columns, second plot). See tip below** ax2 = fig.add_subplot( 2 , 2 , 3 ) # add subplot 1 (1 row, 2 columns, first plot) ax3 = fig.add_subplot( 2 , 2 , 4 ) # add subplot 2 (1 row, 2 columns, second plot). See tip below** # Subplot 1 df_countries.plot(kind = 'scatter' , x = 'Years' , y = 'Brazil' ,figsize = ( 20 , 6 ), ax = ax0) # add to subplot 2 ax0.set_title ( 'Total Immigration to Canada between 1980 - 2013 from Brazil' ) ax0.set_ylabel( 'Number of Immigrants' ) ax0.set_xlabel( 'Years' ) # Subplot 2: df_countries.plot(kind = 'scatter' , x = 'Years' , y = 'Norway' ,figsize = ( 20 , 6 ), ax = ax1) # add to subplot 2 ax1.set_title ( 'Total Immigration to Canada between 1980 - 2013 from Norway' ) ax1.set_ylabel( 'Number of Immigrants' ) ax1.set_xlabel( 'Years' ) # Subplot 3: df_countries.plot(kind = 'scatter' , x = 'Years' , y = 'Denmark' ,figsize = ( 20 , 6 ), ax = ax2) # add to subplot 2 ax2.set_title ( 'Total Immigration to Canada between 1980 - 2013 from Denmark' ) ax2.set_ylabel( 'Number of Immigrants' ) ax2.set_xlabel( 'Years' ) # Subplot 4: df_countries.plot(kind = 'scatter' , x = 'Years' , y = 'Sweden' ,figsize = ( 20 , 6 ), ax = ax3) # add to subplot 2 ax3.set_title ( 'Total Immigration to Canada between 1980 - 2013 from Sweden' ) ax3.set_ylabel( 'Number of Immigrants' ) ax3.set_xlabel( 'Years' ) |