Hi,
I'm trying to run the below code but receiving "ValueError("bad input shape {0}".format(shape))" error. Can someone please help me resolve this issue? Note: The dataset has 5 rows.https://github.com/SuryaCitizen/Data
I'm trying to run the below code but receiving "ValueError("bad input shape {0}".format(shape))" error. Can someone please help me resolve this issue? Note: The dataset has 5 rows.https://github.com/SuryaCitizen/Data
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
#Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd #Importing the dataset dataset = pd.read_csv( 'Lingard.csv' ) X = dataset.iloc[:, : - 2 ].values y = dataset.iloc[:, 7 : 9 ].values print (dataset.head()) #Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3 , random_state = 0 ) print (X_train) print (X_test) print (y_train) print (y_test) #Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() sc_y = StandardScaler() X_train = sc_X.fit_transform(X_train) y_train = sc_y.fit_transform(y_train) #Training the SVR model on the Training set from sklearn.svm import SVR regressor = SVR(kernel = 'rbf' ) regressor.fit(X_train, y_train) #Predicting the Test set results y_pred = sc_y.inverse_transform(regressor.predict(sc_X.transform(X_test))) np.set_printoptions(precision = 2 ) print (np.concatenate((y_pred.reshape( len (y_pred), 2 ), y_test.reshape( len (y_test), 2 )), 1 )) #Evaluating the Model Performance from sklearn.metrics import r2_score r2_score(y_test, y_pred) |