Consider the general 2D Gaussian function, centered at (0.5,0.5),
2a & b
b & 2c
Rotating by 45 degrees counterclockwise gives
(a-b+c) & (a-c)
(a-c) & (a+b+c)
However, given a=1.25, b=0 and c=10000, and using Python to integrate over the unit square,
A*exp(-a*(-0.5 + x)**2-b*(-0.5 + x)*(-0.5 + y)-c*(-0.5 + y)**2)where the covariance matrix can be written in terms of the coefficients a,b, and c as
2a & b
b & 2c
Rotating by 45 degrees counterclockwise gives
(a-b+c) & (a-c)
(a-c) & (a+b+c)
However, given a=1.25, b=0 and c=10000, and using Python to integrate over the unit square,
import numpy as np import matplotlib.pyplot as plt a=1.25 b=0 c=10000 d=(a-b+c)/2 e=a-c f=(a+b+c)/2 fig, ax = plt.subplots() x,y=np.meshgrid(np.linspace(0,1,50),np.linspace(0,1,50)) z=3*np.exp(-a*(-0.5 + x)**2-b*(-0.5 + x)*(-0.5 + y)-c*(-0.5 + y)**2) w=3*np.exp(-d*(-0.5 + x)**2-e*(-0.5 + x)*(-0.5 + y)-f*(-0.5 + y)**2) #rotated by 45 degrees counterclockwise cs=ax.contour(x,y,z,levels=[0.8],colors='k',linestyles='dashed'); cs=ax.contour(x,y,w,levels=[0.8],colors='k',linestyles='dashed'); from scipy import integrate h = lambda y, x: 3*np.exp(-a*(-0.5 + x)**2-b*(-0.5 + x)*(-0.5 + y)-c*(-0.5 + y)**2) g = lambda y, x: 3*np.exp(-d*(-0.5 + x)**2-e*(-0.5 + x)*(-0.5 + y)-f*(-0.5 + y)**2) print(integrate.dblquad(h, 0, 1, lambda x: 0, lambda x: 1)) print(integrate.dblquad(g, 0, 1, lambda x: 0, lambda x: 1))And output:
(0.061757213121080706, 1.4742783672680448e-08) (0.048117567144166894, 5.930455188853047e-12)As well as the plot (where the one with coefficients a,b,c is the horizontal one, and the level curves are for C=z(x,y)=w(x,y)=0.8, both plotted over the unit square):
![[Image: AeAiT.png]](https://i.stack.imgur.com/AeAiT.png)