May-08-2022, 10:23 PM
Hi!
I have a system of 10 nonlinear ODE with 10 variables (y[0], y[1], ... y[9]), there are 10 initial conditions for y[i] for x=0 and 4 conditions for x = 6.804.
I try to solve a boundary value problem using scipy.integrate.solve_bvp according to the following algorithm: https://docs.scipy.org/doc/scipy/referen...e_bvp.html
I get the error "_vhstack_dispatcher() takes 1 positional argument but 9 were given" though I tried to use np.dstack instead of np.hstack. Please help to fix the error.
My code is below:
I have a system of 10 nonlinear ODE with 10 variables (y[0], y[1], ... y[9]), there are 10 initial conditions for y[i] for x=0 and 4 conditions for x = 6.804.
I try to solve a boundary value problem using scipy.integrate.solve_bvp according to the following algorithm: https://docs.scipy.org/doc/scipy/referen...e_bvp.html
I get the error "_vhstack_dispatcher() takes 1 positional argument but 9 were given" though I tried to use np.dstack instead of np.hstack. Please help to fix the error.
My code is below:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import numpy as np from scipy.integrate import solve_bvp import matplotlib.pyplot as plt from scipy.constants import g def fun(x, y): return np.vstack((ptb / y[ 4 ] * y[ 5 ] / np.sqrt(y[ 5 ] * * 2 + y[ 6 ] * * 2 ) * function_deo(y[ 4 ], y[ 5 ], y[ 6 ], y[ 9 ], ptb, mqb, pes) - 1 / y[ 2 ] * * 2 + y[ 1 ] * * 2 / y[ 2 ], ptb / y[ 4 ] * y[ 6 ] / np.sqrt(y[ 5 ] * * 2 + y[ 6 ] * * 2 ) * function_deo(y[ 4 ], y[ 5 ], y[ 6 ], y[ 9 ], ptb, mqb, pes) - y[ 0 ] * y[ 1 ] / y[ 2 ]), y[ 0 ], y[ 1 ] / y[ 2 ], - mqb * function_deo(y[ 4 ], y[ 5 ], y[ 6 ], y[ 9 ], ptb, mqb, pes), y[ 6 ] * y[ 1 ] / y[ 2 ] - y[ 7 ], - y[ 5 ] * 2.0 * y[ 1 ] / y[ 2 ] + y[ 6 ] * y[ 0 ] / y[ 2 ] - y[ 8 ] * 1.0 / y[ 2 ], y[ 5 ] * ( - 2.0 / y[ 2 ] * * 3 + y[ 1 ] * * 2 / y[ 2 ] * * 2 ) + y[ 6 ] * ( - y[ 0 ] * y[ 1 ]) / y[ 2 ] + y[ 8 ] * y[ 1 ] / y[ 2 ] * * 2 , 0 , ptb / y[ 4 ] * * 2 * (np.sqrt(y[ 5 ] * * 2 + y[ 6 ] * * 2 )) * function_deo(y[ 4 ], y[ 5 ], y[ 6 ], y[ 9 ], ptb, mqb, pes)) #Implement evaluation of the boundary condition residuals: def bc(ya, yb): return np.array([ya[ - 0.03899746484 , 1.05800280714 , - 0.30648856279 , - 0.605427 , 1 , - 0.065851 , 1.361805 , 1.419320 , - 8.219418e - 5 , 0.6 ], yb[ 3.230021179060866e - 17 , 0.5519654178809713 , 2.221001221001221 , np.pi]]) #Define the initial mesh with 20 nodes: x = np.linspace( 0.0 , 6.804 , 20 ) #To obtain solutions, different initial guesses for y are used. They are denoted by subscripts a and b. y_a = np.zeros(( 10 , x.size)) y_b = np.zeros(( 10 , x.size)) y_b[ 0 ] = 3.230021179060866e - 17 res_a = solve_bvp(fun, bc, x, y_a) res_b = solve_bvp(fun, bc, x, y_b) x_plot = np.linspace( 0 , 6.804 , 100 ) y_plot_a = res_a.sol(x_plot)[ 0 ] y_plot_b = res_b.sol(x_plot)[ 0 ] #plt.plot(x_plot, y_plot_a, label='y_a') #plt.plot(x_plot, y_plot_b, label='y_b') plt.legend() plt.xlabel( "x" ) plt.ylabel( "y" ) plt.show() |