Posts: 5
Threads: 3
Joined: Jun 2022
Jun-20-2022, 11:23 AM
(This post was last modified: Jun-20-2022, 12:11 PM by caro.)
hello,
my array looks like :
[[10,20,'1'],[10,50,'1'],[10,100,'1'],[10,30,'1'],[20,10,'1'],[10,60,'1'],[30,10,'1']
I would like to know how to return an array(newarr) with the following logic(here is a pseudo code):I need it to be implement as faster as possible! please help be to write it in the correct and faster way in python.(maybe using numpy,i understand that numpy is fast)
i=0
for x in arraynumpy
i=i+1
for y in arraynumpy[0:i-1]
if x[0]==y[1] and x[1]==y[0] and x[2]==y[2]
newarr.append(x)
continue; # break the loop for y,if found the array that will be returned for the input ,will be: [[20,10,'1'],[30,10,'1']]
thank you
Attached Files
Thumbnail(s)
Posts: 6,778
Threads: 20
Joined: Feb 2020
numpy will speed up performing math operations on arrays. This is not math.
The best way to speed something up is do less. This is your code:
def loop_match(data):
"""Find reversed matches by looping through data"""
result = []
for index, a in enumerate(data):
for b in data[index + 1 :]:
if a[2] == b[2] and a[1] == b[0] and a[0] == b[1]:
result.append(b)
break
return result This has lots of looping and lots of comparisons.
This uses set operations to find the intersection of the data and the data with the first two elements swapped.
def list_match(data):
"""Find reversed matches using set intersection"""
data = set(data)
reversed = set([(x[1], x[0], x[2]) for x in data if x[1] > x[0]])
return data.intersection(reversed) I used timeit.Timer() to measure the runtime for processing 1000 tuples.
def list_match(data):
"""Find reversed matches using set intersection"""
data = set(data)
reversed = set([(x[1], x[0], x[2]) for x in data if x[1] > x[0]])
return data.intersection(reversed)
def loop_match(data):
"""Find reversed matches by looping through data"""
result = []
for index, a in enumerate(data):
for b in data[index + 1 :]:
if a[2] == b[2] and a[1] == b[0] and a[0] == b[1]:
result.append(b)
break
return result
if __name__ == "__main__":
from timeit import Timer
from random import randint, choice
data = [
(randint(1, 100), randint(1, 100), choice(["1", "2", "3"])) for _ in range(1000)
]
print(sorted(list(list_match(data))))
print(sorted(loop_match(data)))
print(
"Reversed match",
Timer("list_match(data)", setup="from __main__ import list_match, data").timeit(1000),
"msec",
)
print(
"Looping",
Timer("loop_match(data)", setup="from __main__ import loop_match, data").timeit(1000),
"msec",
) Output: [(16, 8, '1'), (28, 24, '2'), (34, 29, '1'), (57, 37, '2'), (58, 29, '3'), (64, 44, '3'), (67, 45, '2'), (78, 59, '3'), (79, 75, '3'), (82, 20, '1'), (82, 41, '3'), (83, 24, '1'), (83, 61, '1'), (85, 55, '3'), (89, 20, '2'), (89, 64, '3'), (90, 72, '1'), (92, 57, '2'), (93, 9, '1'), (93, 74, '2'), (98, 62, '3'), (100, 76, '3')]
[(8, 16, '1'), (9, 93, '1'), (24, 28, '2'), (24, 83, '1'), (29, 34, '1'), (29, 58, '3'), (41, 82, '3'), (44, 64, '3'), (45, 67, '2'), (57, 37, '2'), (61, 83, '1'), (64, 89, '3'), (75, 79, '3'), (76, 100, '3'), (78, 59, '3'), (82, 20, '1'), (85, 55, '3'), (89, 20, '2'), (90, 72, '1'), (92, 57, '2'), (93, 74, '2'), (98, 62, '3')]
Reversed match 0.24131610000000003 msec
Looping 40.840424299999995 msec
The set method is almost 170 times faster than the loop method. As a side benefit the set method always returns tuples with the values in sorted order (high, low).
Posts: 4,780
Threads: 76
Joined: Jan 2018
I suggest this implementation, inspired from more_itertools.unique_everseen()
def select(iterable):
seenset = set()
seenset_add = seenset.add
for element in iterable:
k = element[1], element[0], element[2]
if k in seenset:
yield element
else:
seenset_add(tuple(element))
arr = [[10,20,'1'],[10,50,'1'],[10,100,'1'],[10,30,'1'],[20,10,'1'],[10,60,'1'],[30,10,'1']]
new = list(select(arr))
print(arr)
print(new) Output: [[10, 20, '1'], [10, 50, '1'], [10, 100, '1'], [10, 30, '1'], [20, 10, '1'], [10, 60, '1'], [30, 10, '1']]
[[20, 10, '1'], [30, 10, '1']]
Posts: 5
Threads: 3
Joined: Jun 2022
Posts: 4,780
Threads: 76
Joined: Jan 2018
Thinking again, I think it should be the following, because if you append for example [10, 30, '1'] to the list, it should also be in the output list.
def select(iterable):
seenset = set()
seenset_add = seenset.add
for element in iterable:
k = element[1], element[0], element[2]
if k in seenset:
yield element
seenset_add(tuple(element))
Posts: 6,778
Threads: 20
Joined: Feb 2020
Jun-20-2022, 04:00 PM
(This post was last modified: Jun-20-2022, 04:00 PM by deanhystad.)
Adding Gribouillis' method to my speed test.
def list_match(data):
"""Find reversed matches using set intersection"""
data = set(data)
reversed = set([(x[1], x[0], x[2]) for x in data if x[1] > x[0]])
return data.intersection(reversed)
def loop_match(data):
"""Find reversed matches by looping through data"""
result = []
for index, a in enumerate(data):
for b in data[index + 1 :]:
if a[2] == b[2] and a[1] == b[0] and a[0] == b[1]:
result.append(b)
break
return result
def select(iterable):
seenset = set()
seenset_add = seenset.add
for element in iterable:
k = element[1], element[0], element[2]
if k in seenset:
yield element
else:
seenset_add(tuple(element))
if __name__ == "__main__":
from timeit import Timer
from random import randint, choice
data = [
(randint(1, 100), randint(1, 100), choice(["1", "2", "3"])) for _ in range(1000)
]
print("Sets", sorted(list(list_match(data))))
print("Loop", sorted(loop_match(data)))
print("Grib", list(select(data)))
print(
"Reversed match",
Timer("list_match(data)", setup="from __main__ import list_match, data").timeit(
1000
),
"msec",
)
print(
"Looping",
Timer("loop_match(data)", setup="from __main__ import loop_match, data").timeit(
1000
),
"msec",
) Output: Sets [(24, 14, '2'), (25, 1, '1'), (27, 8, '1'), (38, 26, '1'), (46, 30, '3'), (53, 2, '2'), (54, 10, '1'), (69, 67, '1'), (73, 9, '2'), (79, 22, '1'), (81, 49, '1'), (82, 79, '2'), (87, 69, '2'), (93, 38, '2'), (93, 61, '1'), (95, 58, '3'), (96, 94, '2'), (97, 71, '2'), (99, 19, '2'), (100, 79, '3')]
Loop [(2, 53, '2'), (8, 27, '1'), (19, 99, '2'), (24, 14, '2'), (25, 1, '1'), (38, 26, '1'), (38, 93, '2'), (46, 30, '3'), (49, 81, '1'), (54, 10, '1'), (58, 95, '3'), (61, 93, '1'), (67, 69, '1'), (69, 87, '2'), (73, 9, '2'), (79, 22, '1'), (79, 82, '2'), (79, 100, '3'), (96, 94, '2'), (97, 71, '2')]
Grib [(67, 69, '1'), (2, 53, '2'), (38, 26, '1'), (79, 100, '3'), (24, 14, '2'), (79, 82, '2'), (19, 99, '2'), (69, 87, '2'), (54, 10, '1'), (61, 93, '1'), (38, 93, '2'), (58, 95, '3'), (49, 81, '1'), (79, 22, '1'), (58, 95, '3'), (25, 1, '1'), (96, 94, '2'), (97, 71, '2'), (8, 27, '1'), (73, 9, '2'), (46, 30, '3')]
Reversed match 0.2510886 msec
Looping 41.859004899999995 msec
Gribouillis 0.3636735999999985 msec
Avoid looping.
Notice that Gribouillis' algorithm can result in duplicate entries (58, 95, '3' appears twice).
Posts: 4,780
Threads: 76
Joined: Jan 2018
(Jun-20-2022, 03:58 PM)deanhystad Wrote: Notice that Gribouillis' algorithm can result in duplicate entries (58, 95, '3' appears twice). I think the initial logic at the top of this thread can also result in duplicate entries.
Posts: 6,778
Threads: 20
Joined: Feb 2020
I'll add the disclaimer. "Notice that Gribouillis' algorithm can result in duplicate entries (58, 95, '3' appears twice). I don't know if that is important."
The original logic also allowed for pairs like (30, 10, 1) and (10, 30, 1) which I'm not sure about either,
|