Hello I'm trying to run this code, but I get this error on line 47 that,
Another way I can fix it is if I add an index column to the dataframe from 0 to the end of the row.
Please can someone tell me how to go about that?
Thanks
Another way I can fix it is if I add an index column to the dataframe from 0 to the end of the row.
Please can someone tell me how to go about that?
Thanks
Error:index 19995 is out of bounds for axis 0 with size 29
import pandas as pd import numpy as np from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity ###### helper functions. Use them when needed ####### def get_title_from_index(id): return df[df.id == id]["title"].values[0] def get_index_from_title(title): return df[df.title == title]["id"].values[0] ################################################## # print(df.title.values[3]) ##Step 1: Read CSV File df = pd.read_csv("/content/tmdb_5000_movies1.csv", encoding= 'latin1') #print df.columns ##Step 2: Select Features # print(df.head(2)) features = ['keywords','genres'] ##Step 3: Create a column in DF which combines all selected features for feature in features: df[feature] = df[feature].fillna('') def combine_features(row): # try: return row['keywords'] +" "+row["genres"] # except: # print "Error:", row df["combined_features"] = df.apply(combine_features,axis=1) #print "Combined Features:", df["combined_features"].head() ##Step 4: Create count matrix from this new combined column cv = CountVectorizer() count_matrix = cv.fit_transform(df["combined_features"]) ##Step 5: Compute the Cosine Similarity based on the count_matrix cosine_sim = cosine_similarity(count_matrix) movie_user_likes = "Avatar" ## Step 6: Get index of this movie from its title movie_index = get_index_from_title(movie_user_likes) print(movie_index) similar_movies = list(enumerate(cosine_sim[movie_index])) # Step 7: Get a list of similar movies in descending order of similarity score sorted_similar_movies = sorted(similar_movies,key=lambda x:x[1],reverse=True) ## Step 8: Print titles of first 50 movies i=0 for element in sorted_similar_movies: print(get_title_from_index(element[0])) i=i+1 if i>5: break