Posts: 7,312
Threads: 123
Joined: Sep 2016
May-07-2023, 04:24 PM
(This post was last modified: May-07-2023, 04:24 PM by snippsat.)
(May-07-2023, 01:44 PM)SuchUmami Wrote: In future, I will not put too many functions in my code. I think you misunderstand a little here.
I mean that you could make function then it will isolate code,
so can have what you have written in one function and other stuff needed in a other function.
Example.
# kr3.py
import krakenex
import pandas as pd
api = krakenex.API()
def calc_pair_price():
# Define currency pairs and their corresponding names
currency_pairs = [
('XETHXXBT', 'ETH/BTC'),('XXBTZEUR', 'BTC/EUR'),
('XXBTZUSD', 'BTC/USD'),('XXBTZGBP', 'BTC/GBP'),
('XETHZEUR', 'ETH/EUR'),('XETHZGBP', 'ETH/GBP'),
('XETHZUSD', 'ETH/USD'),('EURGBP', 'EURGBP'),
('ZEURZUSD', 'EUR/USD'),('ZGBPZUSD', 'GBP/USD'),
('PAXGXBT', 'PAXG/BTC'),('PAXGETH', 'PAXG/ETH'),
('PAXGEUR', 'PAXG/EUR'),('PAXGUSD', 'PAXG/USD'),
('XXRPXXBT', 'XRP/BTC'),('XRPETH', 'XRP/ETH'),
('XXRPZEUR', 'XRP/EUR'),('XRPGBP', 'XRP/GBP'),
('XXRPZUSD', 'XRP/USD'),
]
time_frames = ['1', '5', '15', '30', '60', '240', '1440', '10080']
for pair, pair_name in currency_pairs:
for tf in time_frames:
print(f'{tf} minute m/a ({pair_name})')
# Fetch OHLC data for the given pair and time frame
ohlc_data = api.query_public('OHLC', {'pair': pair, 'interval': tf})
# Convert the data to a pandas dataframe
df = pd.DataFrame(
ohlc_data['result'][pair],
columns=['time', 'open', 'high', 'low', 'close', 'vwap', 'volume', 'count',]
)
df['time'] = pd.to_datetime(df['time'], unit='s')
df.set_index('time', inplace=True)
# Calculate the moving averages
last_20_candles = df.iloc[-21:-1]
last_20_close_prices = last_20_candles['close'].astype(float).tolist()
avg_last_20_close_price = sum(last_20_close_prices) / len(last_20_close_prices)
print(f'20 period m/a: {avg_last_20_close_price}')
last_50_candles = df.iloc[-51:-1]
last_50_close_prices = last_50_candles['close'].astype(float).tolist()
avg_last_50_close_price = sum(last_50_close_prices) / len(last_50_close_prices)
print(f'50 period m/a: {avg_last_50_close_price}')
last_200_candles = df.iloc[-201:-1]
last_200_close_prices = (last_200_candles['close'].astype(float).tolist())
avg_last_200_close_price = sum(last_200_close_prices) / len(last_200_close_prices)
print(f'200 period m/a: {avg_last_200_close_price}')
print('\n')
def calc_max():
pair = 'BTC/USD'
interval = 15
# make the API request for OHLC data
ohlc_data = api.query_public('OHLC', {'pair': pair, 'interval': interval})
# Convert the data to a pandas dataframe
df = pd.DataFrame(ohlc_data['result'][pair], columns=['time', 'open', 'high', 'low', 'close', 'vwap', 'volume', 'count'])
df['time'] = pd.to_datetime(df['time'], unit='s')
df.set_index('time', inplace=True)
max_price = df['high'].max()
print(f"Maximum price in the <high column>: {max_price}")
if __name__ == '__main__':
calc_max()
#calc_pair_price() (dl_env) G:\div_code\dl_env
λ python kr3.py
Maximum price in the <high column>: 29975.0 So now have added a function as eg calculate Maximum price in high high column(as i don't understand what you want to add).
If uncomment calc_pair_price() it will run your code,so a way organize code that make it easier to add stuff.
Also is normal that a function return code for further processing,then can to smaller task and code get easier to read.
Posts: 41
Threads: 20
Joined: Apr 2023
What I don't quite understand is if I just use this part of the code you wrote:
def calc_max():
pair = 'BTC/USD'
interval = 15
# make the API request for OHLC data
ohlc_data = api.query_public('OHLC', {'pair': pair, 'interval': interval})
# Convert the data to a pandas dataframe
df = pd.DataFrame(ohlc_data['result'][pair], columns=['time', 'open', 'high', 'low', 'close', 'vwap', 'volume', 'count'])
df['time'] = pd.to_datetime(df['time'], unit='s')
df.set_index('time', inplace=True)
max_price = df['high'].max()
print(f"Maximum price in the <high column>: {max_price}")
if __name__ == '__main__':
calc_max()
#calc_pair_price() That I get the very same number without any of my code. I'm sorry if this is a dumb observation.
Posts: 7,312
Threads: 123
Joined: Sep 2016
May-08-2023, 01:58 PM
(This post was last modified: May-08-2023, 01:58 PM by snippsat.)
Not sure what you try do.
It was just a quick function demo.
Can write it more useful like this,now is much flexible and can take different argument in.
import krakenex
import pandas as pd
api = krakenex.API()
def calc_max(pair: str, interval: int, col_index: str) -> None:
# make the API request for OHLC data
ohlc_data = api.query_public('OHLC', {'pair': pair, 'interval': interval})
# Convert the data to a pandas dataframe
df = pd.DataFrame(ohlc_data['result'][pair], columns=['time', 'open', 'high', 'low', 'close', 'vwap', 'volume', 'count'])
df['time'] = pd.to_datetime(df['time'], unit='s')
df.set_index('time', inplace=True)
print(f'{df.head()}\n')
max_price = df[col_index].max()
print(f"Maximum price in the <{col_index}>: {max_price}")
if __name__ == '__main__':
pair = 'XRPGBP'
interval = 60
col_index = 'open'
calc_max(pair, interval, col_index) Output: (dl_env) G:\div_code\dl_env
λ python calc_max.py
open high low close vwap volume count
time
2023-04-08 14:00:00 0.41009 0.41067 0.41003 0.41049 0.41031 2498.49848700 17
2023-04-08 15:00:00 0.41087 0.41087 0.41001 0.41002 0.41035 2470.63201500 19
2023-04-08 16:00:00 0.40983 0.40992 0.40913 0.40950 0.40945 5611.68209685 19
2023-04-08 17:00:00 0.40953 0.41037 0.40767 0.40767 0.40918 2416.04309153 15
2023-04-08 18:00:00 0.40755 0.40811 0.40507 0.40585 0.40658 5555.67721549 33
Maximum price in the <open>: 0.42970
Now it check max in XRPGBP open column.
Let say now want to check max in BTC/USD high column with interval 15.
import krakenex
import pandas as pd
api = krakenex.API()
def calc_max(pair: str, interval: int, col_index: str) -> None:
# make the API request for OHLC data
ohlc_data = api.query_public('OHLC', {'pair': pair, 'interval': interval})
# Convert the data to a pandas dataframe
df = pd.DataFrame(ohlc_data['result'][pair], columns=['time', 'open', 'high', 'low', 'close', 'vwap', 'volume', 'count'])
df['time'] = pd.to_datetime(df['time'], unit='s')
df.set_index('time', inplace=True)
print(f'{df.head()}\n')
max_price = df[col_index].max()
print(f"Maximum price in the <{col_index}>: {max_price}")
if __name__ == '__main__':
pair = 'BTC/USD'
interval = 15
col_index = 'high'
calc_max(pair, interval, col_index) Output: G:\div_code\dl_env
λ python calc_max.py
open high low close vwap volume count
time
2023-05-01 02:15:00 28650.2 28678.1 28568.0 28600.0 28635.1 74.45265240 541
2023-05-01 02:30:00 28599.9 28652.7 28586.8 28589.4 28615.1 30.90120898 432
2023-05-01 02:45:00 28598.0 28623.1 28536.0 28555.3 28580.7 20.00984895 350
2023-05-01 03:00:00 28564.2 28565.1 28477.4 28491.9 28537.1 41.99185887 436
2023-05-01 03:15:00 28489.1 28605.7 28450.0 28595.8 28537.2 42.52158371 402
Maximum price in the <high>: 29868.1
|