May-30-2024, 08:06 PM
I have data that I have sorted, below is a sample of the data:
When I run the code I get the following error:
Output: missing_values count
0 51
3 1
12 12
13 1
15 1
16 1
21 1
35 2
36 3
40 1
I have the following code:1 2 3 4 5 6 7 8 9 |
# Get the vount of each missing value missing_value_count = missing_values.iloc[:, 0 : 1 ].value_counts().to_frame() missing_value_count.sort_index(inplace = True ) missing_value_count.to_csv( 'question.csv' ) missing_value_count.agg( lambda s: pd.Series([ * s.nlargest().index, * s.nsmallest().index], [ 'missing_values' ]), axis = 'columns' ) |
Output:missing_value_count.agg(lambda s: pd.Series([*s.nlargest().index, *s.nsmallest().index],
['missing_values']),
axis='columns')
Traceback (most recent call last):
Cell In[29], line 1
missing_value_count.agg(lambda s: pd.Series([*s.nlargest().index, *s.nsmallest().index],
File D:\Users\Mahmoud\anaconda3\Lib\site-packages\pandas\core\frame.py:9196 in aggregate
result = op.agg()
File D:\Users\Mahmoud\anaconda3\Lib\site-packages\pandas\core\apply.py:699 in agg
result = self.obj.apply(self.orig_f, axis, args=self.args, **self.kwargs)
File D:\Users\Mahmoud\anaconda3\Lib\site-packages\pandas\core\frame.py:9423 in apply
return op.apply().__finalize__(self, method="apply")
File D:\Users\Mahmoud\anaconda3\Lib\site-packages\pandas\core\apply.py:678 in apply
return self.apply_standard()
File D:\Users\Mahmoud\anaconda3\Lib\site-packages\pandas\core\apply.py:798 in apply_standard
results, res_index = self.apply_series_generator()
File D:\Users\Mahmoud\anaconda3\Lib\site-packages\pandas\core\apply.py:814 in apply_series_generator
results[i] = self.f(v)
Cell In[29], line 1 in <lambda>
missing_value_count.agg(lambda s: pd.Series([*s.nlargest().index, *s.nsmallest().index],
File D:\Users\Mahmoud\anaconda3\Lib\site-packages\pandas\core\series.py:500 in __init__
com.require_length_match(data, index)
File D:\Users\Mahmoud\anaconda3\Lib\site-packages\pandas\core\common.py:576 in require_length_match
raise ValueError(
ValueError: Length of values (2) does not match length of index (1)
I want to return the lowest value in missing_values with the highest values in count. So in the above data the result will beOutput: missing_values count
0 51
How can I modify this part of the code to get the result I want?1 2 3 |
missing_value_count.agg( lambda s: pd.Series([ * s.nlargest().index, * s.nsmallest().index], [ 'missing_values' ]), axis = 'columns' ) |