Jan-06-2025, 09:47 AM
(This post was last modified: Jan-06-2025, 09:48 AM by Stegosaurus.)
Hi everyone,
As the title implies, I am trying to create heatmaps but not all values are being shown.
This is on a Jupyter Notebook.
![[Image: image.png]](https://filedb.experts-exchange.com/incoming/2025/01_w02/1670536/image.png)
![[Image: image.png]](https://filedb.experts-exchange.com/incoming/2025/01_w02/1670537/image.png)
![[Image: image.png]](https://filedb.experts-exchange.com/incoming/2025/01_w02/1670538/image.png)
Any help is much appreciated! :)
As the title implies, I am trying to create heatmaps but not all values are being shown.
This is on a Jupyter Notebook.
![[Image: image.png]](https://filedb.experts-exchange.com/incoming/2025/01_w02/1670536/image.png)
# Show correlation heatmap and matrix df_corr = df[['floor_area_sqm', 'resale_price', 'lease_commence_date']] # Calculate the correlation matrix corrmat = df_corr.corr() # Show the heatmap import seaborn as sns import matplotlib.pyplot as plt sns.heatmap(corrmat, annot=True) plt.show()
![[Image: image.png]](https://filedb.experts-exchange.com/incoming/2025/01_w02/1670537/image.png)
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder # Create a copy with only the columns we need df_corr = df[['floor_area_sqm', 'resale_price', 'lease_commence_date', 'storey_range']].copy() # Convert storey_range to numeric using LabelEncoder le = LabelEncoder() df_corr['storey_range'] = le.fit_transform(df_corr['storey_range']) # Ensure all columns are numeric df_corr = df_corr.apply(pd.to_numeric, errors='coerce') # Drop rows with any NaN values to ensure clean data df_corr = df_corr.dropna() # Compute correlation matrix corrmat = df_corr.corr(method='pearson') # Debugging: Print correlation matrix and its shape print("\nCorrelation matrix shape:", corrmat.shape) print("\nCorrelation matrix:") print(corrmat) # Ensure there are no NaN values in the correlation matrix if corrmat.isnull().values.any(): print("NaN values found in the correlation matrix!") else: print("No NaN values in the correlation matrix.") # Modified heatmap code plt.figure(figsize=(12, 10)) sns.heatmap(corrmat, annot=True) # Add this to ensure annotations are visible # Ensure the full matrix is displayed plt.subplots_adjust(bottom=0.15) # Rotate x-axis labels for better readability plt.xticks(rotation=45, ha='right') plt.yticks(rotation=0) # Set title and adjust layout plt.title('Correlation Matrix Heatmap') plt.tight_layout() plt.show()I tried debugging it and the values do seem to be calculated correctly:
![[Image: image.png]](https://filedb.experts-exchange.com/incoming/2025/01_w02/1670538/image.png)
Any help is much appreciated! :)