what is wrong with my code why keep failing?
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
My failure result from the AI check
THE ASSIGMENT AS FOLLOW
High-Level Tasks
Load and Explore the Data
Data Preprocessing
Build and Train a Linear Regression Model
Make Predictions and Evaluate the Model
Bonus Challenge (Optional)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Lab Instructions
1. Load and Explore the Data
Step 1.1: Import the required Python library and load dataset.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 1.2: Display the First 5 Rows
Use the provided code cell to display the first 5 rows of the dataset.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 1.3: Examine Column Names and Data Types
Inspect the column names and data types using df.info().
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 1.4: Get Summary Statistics
Get summary statistics of numerical columns using df.describe() and df.dtypes.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2. Data Preprocessing
Step 2.1: Handle Missing Values
Identify and handle any missing values. You could choose to drop rows with missing values or fill them with appropriate statistics (mean, median, etc.). For this activity, fill the missing values with the median to retain as much data as possible without introducing bias.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# ... (Your existing code for displaying info, describe, dtypes, and handling missing values in 'condition')
# Correct feature and target selection using actual column names
# Feature Scaling (Important!)
#Fit and Transform the training data
# (Optional) Example of inverse transforming the predictions if needed:
# y_pred_original_scale = scaler.inverse_transform(y_pred)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 2.2: Select Relevant Features
Select the features (e.g., 'sqft_living', 'bedrooms', 'bathrooms',’condition’,’floors’) and the target variable ('price').
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 2.3: Encode Categorical Feature
Encode the categorical feature 'condition' using one-hot encoding.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 2.4: Split the Data
Split the data into training and testing sets (80% train, 20% test) using train_test_split from Scikit-Learn.
Make sure to set the random_state parameter to 42 to ensure reproducibility and obtain the same results as the expected solution.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3. Build and Train a Linear Regression Model
Step 3.1: Import LinearRegression
Import LinearRegression from sklearn.linear_model.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 3.2: Create an Instance of the Model
Create an instance of the LinearRegression model.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#### Step 3.3: Fit the Model
Fit the model to the training data.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4. Make Predictions and Evaluate the Model
Step 4.1: Make Predictions
Use the trained model to make predictions on the testing data.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 4.2: Evaluate the Model
Calculate the Mean Squared Error (MSE) as mse and R-squared value as r_squared to evaluate the model's performance, then check your results by printing them in the following cell.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Check Your Results:¶
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 5.1: Experiment with a Different Regression Algorithm
Experiment with a different regression algorithm (e.g., DecisionTreeRegressor or RandomForestRegressor) and compare its performance to the Linear Regression model using the same evaluation metrics.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
RandomForestRegressor
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
My failure result from the AI check
Output:# Print to check results
print(f"Mean Squared Error (MSE): {mse}")
print(f"R-squared: {r_squared}")
Hidden Tests Redacted
One or more test cases in this cell did not pass.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - THE ASSIGMENT AS FOLLOW
High-Level Tasks
Load and Explore the Data
Data Preprocessing
Build and Train a Linear Regression Model
Make Predictions and Evaluate the Model
Bonus Challenge (Optional)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Lab Instructions
1. Load and Explore the Data
Step 1.1: Import the required Python library and load dataset.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.preprocessing import StandardScaler df = pd.read_csv("house_prices.csv")- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 1.2: Display the First 5 Rows
Use the provided code cell to display the first 5 rows of the dataset.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
df.head()- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 1.3: Examine Column Names and Data Types
Inspect the column names and data types using df.info().
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
df.info()- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 1.4: Get Summary Statistics
Get summary statistics of numerical columns using df.describe() and df.dtypes.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
df.describe() df.dtypes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2. Data Preprocessing
Step 2.1: Handle Missing Values
Identify and handle any missing values. You could choose to drop rows with missing values or fill them with appropriate statistics (mean, median, etc.). For this activity, fill the missing values with the median to retain as much data as possible without introducing bias.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.preprocessing import StandardScaler df = pd.read_csv("house_prices.csv") missing_values = df.isnull().sum() print("Missing values in each column:\n", missing_values) for column in df.select_dtypes(include=['float64', 'int64']).columns: median_value = df[column].median() df[column].fillna(median_value, inplace=True) missing_values_after = df.isnull().sum() print("Missing values after filling:\n", missing_values_after)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# ... (Your existing code for displaying info, describe, dtypes, and handling missing values in 'condition')
# Correct feature and target selection using actual column names
# Feature Scaling (Important!)
#Fit and Transform the training data
# (Optional) Example of inverse transforming the predictions if needed:
# y_pred_original_scale = scaler.inverse_transform(y_pred)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X = df.drop('price', axis=1) # Replace 'Price' with your actual target column name y = df['price'] X = pd.get_dummies(X, drop_first=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 2.2: Select Relevant Features
Select the features (e.g., 'sqft_living', 'bedrooms', 'bathrooms',’condition’,’floors’) and the target variable ('price').
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Select relevant features and target variable # Fill missing values in “condition” with median # Show dataframe with filled values in “condition” df = pd.read_csv('house_prices.csv') features = ['sqft_living', 'bedrooms', 'bathrooms', 'condition', 'floors'] target = 'price' X = df[features] y = df[target] print("Features (X):\n", X.head()) print("\nTarget (y):\n", y.head())- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 2.3: Encode Categorical Feature
Encode the categorical feature 'condition' using one-hot encoding.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X_encoded = pd.get_dummies(X, columns=['condition'], drop_first=True) print(X_encoded.head())- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 2.4: Split the Data
Split the data into training and testing sets (80% train, 20% test) using train_test_split from Scikit-Learn.
Make sure to set the random_state parameter to 42 to ensure reproducibility and obtain the same results as the expected solution.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
X_train, X_test, y_train, y_test = train_test_split( X_encoded, # Features DataFrame after encoding y, # Target variable test_size=0.2, # 20% for testing random_state=42 # For reproducibility ) print(f"X_train shape: {X_train.shape}") print(f"y_train shape: {y_train.shape}") print(f"X_test shape: {X_test.shape}") print(f"y_test shape: {y_test.shape}") print(f'Training set shape: {X_train.shape}, Testing set shape: {X_test.shape}')- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3. Build and Train a Linear Regression Model
Step 3.1: Import LinearRegression
Import LinearRegression from sklearn.linear_model.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
from sklearn.linear_model import LinearRegression- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 3.2: Create an Instance of the Model
Create an instance of the LinearRegression model.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
model = LinearRegression()- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#### Step 3.3: Fit the Model
Fit the model to the training data.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
model.fit(X_train, y_train) print("Coefficients:", model.coef_) print("Intercept:", model.intercept_)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4. Make Predictions and Evaluate the Model
Step 4.1: Make Predictions
Use the trained model to make predictions on the testing data.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
y_pred = model.predict(X_test) predictions_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}) print(predictions_df.head())- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Step 4.2: Evaluate the Model
Calculate the Mean Squared Error (MSE) as mse and R-squared value as r_squared to evaluate the model's performance, then check your results by printing them in the following cell.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
from sklearn.metrics import mean_squared_error, r2_score mse = mean_squared_error(y_test, y_pred) rmse = np.sqrt(mse) r_squared = r2_score(y_test, y_pred) print(f'Mean Squared Error (MSE): {mse}') print(f'Root Mean Squared Error (RMSE): {rmse}') print(f'R-squared (R²): {r_squared}')- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Check Your Results:¶
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Print to check results print(f"Mean Squared Error (MSE): {mse}") print(f"R-squared: {r_squared}")result:
Output:Mean Squared Error (MSE): 71936315243.10368
R-squared: 0.31381685646629
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Step 5.1: Experiment with a Different Regression Algorithm
Experiment with a different regression algorithm (e.g., DecisionTreeRegressor or RandomForestRegressor) and compare its performance to the Linear Regression model using the same evaluation metrics.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.metrics import mean_squared_error, r2_score from sklearn.preprocessing import OneHotEncoder tree_model = DecisionTreeRegressor(random_state=42) # Important: set random_state tree_model.fit(X_train, y_train) y_pred_tree = tree_model.predict(X_test) mse_linear = mean_squared_error(y_test, y_pred) r_squared_linear = r2_score(y_test, y_pred) print("Linear Regression:") print(f"MSE: {mse_linear}") print(f"R-squared: {r_squared_linear}") mse_tree = mean_squared_error(y_test, y_pred_tree) r_squared_tree = r2_score(y_test, y_pred_tree) print("\nDecision Tree Regressor:") print(f"MSE: {mse_tree}") print(f"R-squared: {r_squared_tree}")result:
Output:Linear Regression:
MSE: 71936315243.10368
R-squared: 0.31381685646629
Decision Tree Regressor:
MSE: 117957015596.37538
R-squared: -0.12516349343505206
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - RandomForestRegressor
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor # Import RandomForestRegressor from sklearn.metrics import mean_squared_error, r2_score from sklearn.preprocessing import OneHotEncoder forest_model = RandomForestRegressor(random_state=42) # Set random_state forest_model.fit(X_train, y_train) y_pred_forest = forest_model.predict(X_test) mse_linear = mean_squared_error(y_test, y_pred) r_squared_linear = r2_score(y_test, y_pred) print("Linear Regression:") print(f"MSE: {mse_linear}") print(f"R-squared: {r_squared_linear}") # Random Forest Regressor mse_forest = mean_squared_error(y_test, y_pred_forest) r_squared_forest = r2_score(y_test, y_pred_forest) print("\nRandom Forest Regressor:") print(f"MSE: {mse_forest}") print(f"R-squared: {r_squared_forest}")result:
Output:Linear Regression:
MSE: 71936315243.10368
R-squared: 0.31381685646629
Random Forest Regressor:
MSE: 84176299254.89598
R-squared: 0.19706260407470433
buran write Feb-10-2025, 08:46 AM:
Please, use proper tags when post code, traceback, output, etc. This time I have added tags for you.
See BBcode help for more info.
Please, use proper tags when post code, traceback, output, etc. This time I have added tags for you.
See BBcode help for more info.