Posts: 3
Threads: 2
Joined: Sep 2017
I'm trying to parse a csv file using python. The csv file contains 2 columns with order_total and created_datetime.
[inline]24.99 2015-06-01 00:00:12
0 2015-06-01 00:03:15
164.45 2015-06-01 00:04:05
24.99 2015-06-01 00:08:01
0 2015-06-01 00:08:23
46.73 2015-06-01 00:08:51
0 2015-06-01 00:08:58
47.73 2015-06-02 00:00:25
101.74 2015-06-02 00:04:11
119.99 2015-06-02 00:04:35
38.59 2015-06-02 00:05:26
73.47 2015-06-02 00:06:50
34.24 2015-06-02 00:07:36
27.24 2015-06-03 00:01:40
82.2 2015-06-03 00:12:21
23.48 2015-06-03 00:12:35[/inline]
I need to print the total for each day. For instance the output should be -
2015-06-01 -> 261.16
2015-06-02 -> 415.75
2015-06-03 -> 132.92
Below is my code and its not working as expected -
def sum_orders_test(self,start_date,end_date):
initial_date = datetime.date(int(start_date.split('-')[0]),int(start_date.split('-')[1]),int(start_date.split('-')[2]))
final_date = datetime.date(int(end_date.split('-')[0]),int(end_date.split('-')[1]),int(end_date.split('-')[2]))
day = datetime.timedelta(days=1)
with open("file1.csv", 'r') as data_file:
next(data_file)
reader = csv.reader(data_file, delimiter=',')
order_total=0
if initial_date <= final_date:
for row in reader:
if str(initial_date) in row[1]:
print 'initial_date : ' + str(initial_date)
print 'Date : ' + row[1]
order_total = order_total + row[0]
else:
print 'Else'
print 'Date ' + str(row[1]) + 'Total ' +str(order_total)
order_total=0
initial_date = initial_date + day
Posts: 12,022
Threads: 484
Joined: Sep 2016
There's no comma in example
not working as expected ... OK, so what's not working? ...
Posts: 3
Threads: 2
Joined: Sep 2017
In the given example there are -
1. 7 rows for 01-06-2015
2. 6 rows for 02-06-2015
3. 3 rows for 03-06-2015
When I run my code I get only result for -
1. 7 rows for 01-06-2015
2. 5 rows for 02-06-2015
3. 2 rows for 03-06-2015
Posts: 12,022
Threads: 484
Joined: Sep 2016
Sep-03-2017, 06:17 PM
(This post was last modified: Sep-03-2017, 06:17 PM by Larz60+.)
The following code will give you two lists within lists, one ascending on date, and one descending on date.
I formatted the CSV file as 3 columns, 1 for the float value, 1 for date, and 1 for time (attached my file)
If you only have two columns, will have to adjust.
code:
import operator
import csv
li = []
with open('sampleCSV.csv') as f:
csvdata = csv.reader(f, delimiter=',')
for row in csvdata:
li.append(row)
# li sorted ascending on date (second column)
li_ascending = sorted(li, key=operator.itemgetter(1))
li_descending = sorted(li, key=operator.itemgetter(1), reverse=True)
print('Ascending: {}\nDescending: {}\n'.format(li_ascending, li_descending)) results:
Output: Ascending: [['24.99', '2015-06-01', '00:00:12'], ['0', '2015-06-01', '00:03:15'], ['24.99', '2015-06-01', '00:08:01'], ['0', '2015-06-01', '00:08:23'], ['46.73', '2015-06-01', '00:08:51'], ['0', '2015-06-01', '00:08:58'], ['164.45', '2015-06-01 00:04:05'], ['47.73', '2015-06-02', '00:00:25'], ['101.74', '2015-06-02', '00:04:11'], ['119.99', '2015-06-02', '00:04:35'], ['38.59', '2015-06-02', '00:05:26'], ['73.47', '2015-06-02', '00:06:50'], ['34.24', '2015-06-02', '00:07:36'], ['27.24', '2015-06-03', '00:01:40'], ['82.2', '2015-06-03', '00:12:21'], ['23.48', '2015-06-03', '00:12:35']]
Descending: [['27.24', '2015-06-03', '00:01:40'], ['82.2', '2015-06-03', '00:12:21'], ['23.48', '2015-06-03', '00:12:35'], ['47.73', '2015-06-02', '00:00:25'], ['101.74', '2015-06-02', '00:04:11'], ['119.99', '2015-06-02', '00:04:35'], ['38.59', '2015-06-02', '00:05:26'], ['73.47', '2015-06-02', '00:06:50'], ['34.24', '2015-06-02', '00:07:36'], ['164.45', '2015-06-01 00:04:05'], ['24.99', '2015-06-01', '00:00:12'], ['0', '2015-06-01', '00:03:15'], ['24.99', '2015-06-01', '00:08:01'], ['0', '2015-06-01', '00:08:23'], ['46.73', '2015-06-01', '00:08:51'], ['0', '2015-06-01', '00:08:58']]
Posts: 12,022
Threads: 484
Joined: Sep 2016
I added some more code to show how to access the sorted list:
import operator
import csv
# li = [["user1", 100], ["user2", 234], ["user3", 131]]
li = []
with open('sampleCSV.csv') as f:
csvdata = csv.reader(f, delimiter=',')
for row in csvdata:
li.append(row)
# li sorted ascending on date (second column)
li_ascending = sorted(li, key=operator.itemgetter(1))
li_descending = sorted(li, key=operator.itemgetter(1), reverse=True)
print('Ascending: {}\nDescending: {}\n'.format(li_ascending, li_descending))
# get all ascending grouped by date:
last_date = 0
for inner in li_ascending:
if len(inner) != 3:
break
if last_date == 0:
last_date == inner[1]
if inner[1] != last_date:
print('\n')
last_date = inner[1]
print('Value: {}, Date: {}, Time: {}'.format(inner[0], inner[1], inner[2])) output:
Output: Ascending: [['24.99', '2015-06-01', '00:00:12'], ['0', '2015-06-01', '00:03:15'], ['24.99', '2015-06-01', '00:08:01'], ['0', '2015-06-01', '00:08:23'], ['46.73', '2015-06-01', '00:08:51'], ['0', '2015-06-01', '00:08:58'], ['164.45', '2015-06-01 00:04:05'], ['47.73', '2015-06-02', '00:00:25'], ['101.74', '2015-06-02', '00:04:11'], ['119.99', '2015-06-02', '00:04:35'], ['38.59', '2015-06-02', '00:05:26'], ['73.47', '2015-06-02', '00:06:50'], ['34.24', '2015-06-02', '00:07:36'], ['27.24', '2015-06-03', '00:01:40'], ['82.2', '2015-06-03', '00:12:21'], ['23.48', '2015-06-03', '00:12:35']]
Descending: [['27.24', '2015-06-03', '00:01:40'], ['82.2', '2015-06-03', '00:12:21'], ['23.48', '2015-06-03', '00:12:35'], ['47.73', '2015-06-02', '00:00:25'], ['101.74', '2015-06-02', '00:04:11'], ['119.99', '2015-06-02', '00:04:35'], ['38.59', '2015-06-02', '00:05:26'], ['73.47', '2015-06-02', '00:06:50'], ['34.24', '2015-06-02', '00:07:36'], ['164.45', '2015-06-01 00:04:05'], ['24.99', '2015-06-01', '00:00:12'], ['0', '2015-06-01', '00:03:15'], ['24.99', '2015-06-01', '00:08:01'], ['0', '2015-06-01', '00:08:23'], ['46.73', '2015-06-01', '00:08:51'], ['0', '2015-06-01', '00:08:58']]
Value: 24.99, Date: 2015-06-01, Time: 00:00:12
Value: 0, Date: 2015-06-01, Time: 00:03:15
Value: 24.99, Date: 2015-06-01, Time: 00:08:01
Value: 0, Date: 2015-06-01, Time: 00:08:23
Value: 46.73, Date: 2015-06-01, Time: 00:08:51
Value: 0, Date: 2015-06-01, Time: 00:08:58
|