Posts: 21
Threads: 7
Joined: Oct 2017
Hey everyone,
This is my first time posting on this forum. I am very very new to python, so please bare with me. I'll try and give as much accurate information as possible.
First off I'm using Ubuntu 16. I have Anaconda 5.0 installed, with the python3 package. What I'm attempting to do is learn python while working on a real world project at the same time, since I think it will keep me motivated. My goal/project is to understand and create a working artificial neural network for solving non linear problems.
I have some code, that I found on the internet. It's what I'm working from to try and understand how an ANN works.
Code:
import numpy as np
# sigmoid function
def nonlin(x,deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))
# input dataset
X = np.array([ [0,0,1],
[0,1,1],
[1,0,1],
[1,1,1] ])
# output dataset
y = np.array([[0,0,1,1]]).T
# seed random numbers to make calculation
# deterministic (just a good practice)
np.random.seed(1)
# initialize weights randomly with mean 0
syn0 = 2*np.random.random((3,1)) - 1
for iter in xrange(10000):
# forward propagation
l0 = X
l1 = nonlin(np.dot(l0,syn0))
# how much did we miss?
l1_error = y - l1
# multiply how much we missed by the
# slope of the sigmoid at the values in l1
l1_delta = l1_error * nonlin(l1,True)
# update weights
syn0 += np.dot(l0.T,l1_delta)
print ("Output After Training:")
print (l1) I currently have an Anaconda environment set up using python2.7 to handle this code in Spyder. This is because I think that's what the author of this code was using. I'm trying to run this code to see if it works, and to see if my work space is set up to handle a ANN. When I run it this is the error I keep getting, and I don't understand how to fix it.
Python 2.7.14 |Anaconda, Inc.| (default, Oct 16 2017, 17:29:19)
Type "copyright", "credits" or "license" for more information.
IPython 5.4.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
In [1]: debugfile('/home/b/.config/spyder/temp.py', wdir='/home/b/.config/spyder')
> /home/b/.config/spyder/temp.py(1)<module>()
----> 1 import numpy as np
2
3 # sigmoid function
4 def nonlin(x,deriv=False):
5 if(deriv==True): Is this happening because Spyder doesn't have the right modules loaded up (numpy)?
Thanks guys
Posts: 5,151
Threads: 396
Joined: Sep 2016
Oct-23-2017, 11:43 PM
(This post was last modified: Oct-23-2017, 11:43 PM by metulburr.)
Quote:I currently have an Anaconda environment set up using python2.7 to handle this code in Spyder. This is because I think that's what the author of this code was using. I'm trying to run this code to see if it works, and to see if my work space is set up to handle a ANN. When I run it this is the error I keep getting, and I don't understand how to fix it.
Your just trying to run the above code?
I dont use Anaconda, so i cant really help with that issue. But to run the first snippet all you would need is python2.x and numpy for that same version. I say 2.x because the code has xrange()
If your on linux....you can just do pip install numpy
and then run the code in python2.x from the terminal
If you want to run it under python3.x then remove the x from xrange() and pip3 install numpy and then run the same code with the python3.x interpreter
Recommended Tutorials:
Posts: 12,038
Threads: 487
Joined: Sep 2016
packages are loaded for particular versions of python, this is where the problem may lie.
I'm not familiar with Anaconda. Is there a way to list installed packages in one of their tools?
I use: import pip
pip.get_installed_distributions() on windows, but not sure if you can use the same on Linux.
Posts: 5,151
Threads: 396
Joined: Sep 2016
Oct-23-2017, 11:56 PM
(This post was last modified: Oct-23-2017, 11:56 PM by metulburr.)
Quote:Is there a way to list installed packages in one of their tools?
it appears you would have to do
conda list
based on this below. But i was under the impression that anaconda lready came iwth numpy, that is where it shines, pre-installed packages.
https://conda.io/docs/_downloads/conda-cheatsheet.pdf
Quote:but not sure if you can use the same on Linux.
yes it does appear so
Output: metulburr@ubuntu:~$ python
Python 2.7.12 (default, Nov 19 2016, 06:48:10)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import pip
>>> pip.get_installed_distributions()
[selenium 3.4.1 (/home/metulburr/.local/lib/python2.7/site-packages), pip 9.0.1 (/home/metulburr/.local/lib/python2.7/site-packages), youtube-dl 2017.10.12 (/usr/local/lib/python2.7/dist-packages), webencodings 0.5.1 (/usr/local/lib/python2.7/dist-packages), wcwidth 0.1.7 (/usr/local/lib/python2.7/dist-packages), traitlets 4.3.2 (/usr/local/lib/python2.7/dist-packages), sympy 1.1.1 (/usr/local/lib/python2.7/dist-packages), simplegeneric 0.8.1 (/usr/local/lib/python2.7/dist-packages), screeninfo 0.3 (/usr/local/lib/python2.7/dist-packages), scandir 1.5 (/usr/local/lib/python2.7/dist-packages), requests 2.14.2 (/usr/local/lib/python2.7/dist-packages), PyVirtualDisplay 0.2.1 (/usr/local/lib/python2.7/dist-packages), pytz 2017.2 (/usr/local/lib/python2.7/dist-packages), python-dateutil 2.6.0 (/usr/local/lib/python2.7/dist-packages), Pygments 2.2.0 (/usr/local/lib/python2.7/dist-packages), ptyprocess 0.5.1 (/usr/local/lib/python2.7/dist-packages), psutil 5.3.0 (/usr/local/lib/python2.7/dist-packages), prompt-toolkit 1.0.14 (/usr/local/lib/python2.7/dist-packages), Pillow 4.1.1 (/usr/local/lib/python2.7/dist-packages), pickleshare 0.7.4 (/usr/local/lib/python2.7/dist-packages), pexpect 4.2.1 (/usr/local/lib/python2.7/dist-packages), pathlib2 2.2.1 (/usr/local/lib/python2.7/dist-packages), paramiko 2.1.2 (/usr/local/lib/python2.7/dist-packages), pandas 0.20.2 (/usr/local/lib/python2.7/dist-packages), olefile 0.44 (/usr/local/lib/python2.7/dist-packages), mpmath 0.19 (/usr/local/lib/python2.7/dist-packages), lxml 3.7.3 (/usr/local/lib/python2.7/dist-packages), ipython 5.3.0 (/usr/local/lib/python2.7/dist-packages), ipython-genutils 0.2.0 (/usr/local/lib/python2.7/dist-packages), html5lib 0.999999999 (/usr/local/lib/python2.7/dist-packages), fonttools 3.13.0 (/usr/local/lib/python2.7/dist-packages), facebook-sdk 2.0.0 (/usr/local/lib/python2.7/dist-packages), EasyProcess 0.2.3 (/usr/local/lib/python2.7/dist-packages), decorator 4.0.11 (/usr/local/lib/python2.7/dist-packages), bs4 0.0.1 (/usr/local/lib/python2.7/dist-packages), beautifulsoup4 4.6.0 (/usr/local/lib/python2.7/dist-packages), backports.shutil-get-terminal-size 1.0.0 (/usr/local/lib/python2.7/dist-packages), zope.interface 4.1.3 (/usr/lib/python2.7/dist-packages), wxPython-common 3.0.2.0 (/usr/lib/python2.7/dist-packages), wheel 0.29.0 (/usr/lib/python2.7/dist-packages), urllib3 1.13.1 (/usr/lib/python2.7/dist-packages), unity-lens-photos 1.0 (/usr/lib/python2.7/dist-packages), Twisted 16.0.0 (/usr/lib/python2.7/dist-packages), six 1.10.0 (/usr/lib/python2.7/dist-packages), setuptools 20.7.0 (/usr/lib/python2.7/dist-packages), service-identity 16.0.0 (/usr/lib/python2.7/dist-packages), pyxdg 0.25 (/usr/lib/python2.7/dist-packages), python-libtorrent 1.0.7 (/usr/lib/python2.7/dist-packages), pyserial 3.0.1 (/usr/lib/python2.7/dist-packages), pyOpenSSL 0.15.1 (/usr/lib/python2.7/dist-packages), pygobject 3.20.0 (/usr/lib/python2.7/dist-packages), pygame 1.9.1release (/usr/lib/python2.7/dist-packages), pyasn1 0.1.9 (/usr/lib/python2.7/dist-packages), pyasn1-modules 0.0.7 (/usr/lib/python2.7/dist-packages), PAM 0.4.2 (/usr/lib/python2.7/dist-packages), numpy 1.11.0 (/usr/lib/python2.7/dist-packages), ndg-httpsclient 0.4.0 (/usr/lib/python2.7/dist-packages), ipaddress 1.0.16 (/usr/lib/python2.7/dist-packages), idna 2.0 (/usr/lib/python2.7/dist-packages), enum34 1.1.2 (/usr/lib/python2.7/dist-packages), deluge 1.3.12 (/usr/lib/python2.7/dist-packages), cryptography 1.2.3 (/usr/lib/python2.7/dist-packages), chardet 2.3.0 (/usr/lib/python2.7/dist-packages), attrs 15.2.0 (/usr/lib/python2.7/dist-packages), adium-theme-ubuntu 0.3.4 (/usr/lib/python2.7/dist-packages), wxPython 3.0.2.0 (/usr/lib/python2.7/dist-packages/wx-3.0-gtk2)]
Recommended Tutorials:
Posts: 21
Threads: 7
Joined: Oct 2017
Oct-24-2017, 12:12 AM
(This post was last modified: Oct-24-2017, 12:34 AM by BlackHeart.)
Honestly I just used Anaconda because it seemed like it had all the tools I needed. Maybe I should just uninstall it and use the native python that Ubuntu comes with.
Conda list does give me a list in the terminal.
Here are the current packages:
_ipyw_jlab_nb_ext_conf 0.1.0 py36he11e457_0
alabaster 0.7.10 py36h306e16b_0
anaconda custom py36_0
anaconda-client 1.6.5 py36h19c0dcd_0
anaconda-navigator 1.6.8 py36h672ccc7_0
anaconda-project 0.8.0 py36h29abdf5_0
asn1crypto 0.22.0 py36h265ca7c_1
astroid 1.5.3 py36hbdb9df2_0
astropy 2.0.2 py36ha51211e_4
babel 2.5.0 py36h7d14adf_0
backports 1.0 py36hfa02d7e_1
backports.shutil_get_terminal_size 1.0.0 py36hfea85ff_2
beautifulsoup4 4.6.0 py36h49b8c8c_1
bitarray 0.8.1 py36h5834eb8_0
bkcharts 0.2 py36h735825a_0
blaze 0.11.3 py36h4e06776_0
bleach 2.0.0 py36h688b259_0
bokeh 0.12.7 py36h169c5fd_1
boto 2.48.0 py36h6e4cd66_1
bottleneck 1.2.1 py36haac1ea0_0
ca-certificates 2017.08.26 h1d4fec5_0
cairo 1.14.10 h58b644b_4
certifi 2017.7.27.1 py36h8b7b77e_0
cffi 1.10.0 py36had8d393_1
chardet 3.0.4 py36h0f667ec_1
click 6.7 py36h5253387_0
cloudpickle 0.4.0 py36h30f8c20_0
clyent 1.2.2 py36h7e57e65_1
colorama 0.3.9 py36h489cec4_0
conda 4.3.30 py36h5d9f9f4_0
conda-build 3.0.23 py36h1da9bb0_0
conda-env 2.6.0 h36134e3_1
conda-verify 2.0.0 py36h98955d8_0
contextlib2 0.5.5 py36h6c84a62_0
cryptography 2.0.3 py36ha225213_1
curl 7.55.1 hcb0b314_2
cycler 0.10.0 py36h93f1223_0
cython 0.26.1 py36h21c49d0_0
cytoolz 0.8.2 py36h708bfd4_0
dask 0.15.2 py36h9b48dc4_0
dask-core 0.15.2 py36h0f988a8_0
datashape 0.5.4 py36h3ad6b5c_0
dbus 1.10.22 h3b5a359_0
decorator 4.1.2 py36hd076ac8_0
distributed 1.18.3 py36h73cd4ae_0
docutils 0.14 py36hb0f60f5_0
entrypoints 0.2.3 py36h1aec115_2
et_xmlfile 1.0.1 py36hd6bccc3_0
expat 2.2.4 hc00ebd1_1
fastcache 1.0.2 py36h5b0c431_0
filelock 2.0.12 py36hacfa1f5_0
flask 0.12.2 py36hb24657c_0
flask-cors 3.0.3 py36h2d857d3_0
fontconfig 2.12.4 h88586e7_1
freetype 2.8 h52ed37b_0
get_terminal_size 1.0.0 haa9412d_0
gevent 1.2.2 py36h2fe25dc_0
glib 2.53.6 hc861d11_1
glob2 0.5 py36h2c1b292_1
gmp 6.1.2 hb3b607b_0
gmpy2 2.0.8 py36h55090d7_1
graphite2 1.3.10 hc526e54_0
greenlet 0.4.12 py36h2d503a6_0
gst-plugins-base 1.12.2 he3457e5_0
gstreamer 1.12.2 h4f93127_0
h5py 2.7.0 py36he81ebca_1
harfbuzz 1.5.0 h2545bd6_0
hdf5 1.10.1 hb0523eb_0
heapdict 1.0.0 py36h79797d7_0
html5lib 0.999999999 py36h2cfc398_0
icu 58.2 h211956c_0
idna 2.6 py36h82fb2a8_1
imageio 2.2.0 py36he555465_0
imagesize 0.7.1 py36h52d8127_0
intel-openmp 2018.0.0 h15fc484_7
ipykernel 4.6.1 py36hbf841aa_0
ipython 6.1.0 py36hc72a948_1
ipython_genutils 0.2.0 py36hb52b0d5_0
ipywidgets 7.0.0 py36h7b55c3a_0
isort 4.2.15 py36had401c0_0
itsdangerous 0.24 py36h93cc618_1
jbig 2.1 hdba287a_0
jdcal 1.3 py36h4c697fb_0
jedi 0.10.2 py36h552def0_0
jinja2 2.9.6 py36h489bce4_1
jpeg 9b habf39ab_1
jsonschema 2.6.0 py36h006f8b5_0
jupyter 1.0.0 py36h9896ce5_0
jupyter_client 5.1.0 py36h614e9ea_0
jupyter_console 5.2.0 py36he59e554_1
jupyter_core 4.3.0 py36h357a921_0
jupyterlab 0.27.0 py36h86377d0_2
jupyterlab_launcher 0.4.0 py36h4d8058d_0
lazy-object-proxy 1.3.1 py36h10fcdad_0
libedit 3.1 heed3624_0
libffi 3.2.1 h4deb6c0_3
libgcc-ng 7.2.0 hcbc56d2_1
libgfortran-ng 7.2.0 h6fcbd8e_1
libpng 1.6.32 hda9c8bc_2
libsodium 1.0.13 h31c71d8_2
libssh2 1.8.0 h8c220ad_2
libstdcxx-ng 7.2.0 h24385c6_1
libtiff 4.0.8 h90200ff_9
libtool 2.4.6 hd50d1a6_0
libxcb 1.12 he6ee5dd_2
libxml2 2.9.4 h6b072ca_5
libxslt 1.1.29 hcf9102b_5
llvmlite 0.20.0 py36_0
locket 0.2.0 py36h787c0ad_1
lxml 3.8.0 py36h6c6e760_0
lzo 2.10 hc0eb8fc_0
markupsafe 1.0 py36hd9260cd_1
matplotlib 2.0.2 py36h2acb4ad_1
mccabe 0.6.1 py36h5ad9710_1
mistune 0.7.4 py36hbab8784_0
mkl 2018.0.0 hb491cac_4
mkl-service 1.1.2 py36h17a0993_4
mpc 1.0.3 hf803216_4
mpfr 3.1.5 h12ff648_1
mpmath 0.19 py36h8cc018b_2
msgpack-python 0.4.8 py36hec4c5d1_0
multipledispatch 0.4.9 py36h41da3fb_0
navigator-updater 0.1.0 py36h14770f7_0
nbconvert 5.3.1 py36hb41ffb7_0
nbformat 4.4.0 py36h31c9010_0
ncurses 6.0 h06874d7_1
networkx 1.11 py36hfb3574a_0
nltk 3.2.4 py36h1a0979f_0
nose 1.3.7 py36hcdf7029_2
notebook 5.0.0 py36h0b20546_2
numba 0.35.0 np113py36_10
numexpr 2.6.2 py36hdd3393f_1
numpy 1.13.1 py36h5bc529a_2
numpydoc 0.7.0 py36h18f165f_0
odo 0.5.1 py36h90ed295_0
olefile 0.44 py36h79f9f78_0
openpyxl 2.4.8 py36h41dd2a8_1
openssl 1.0.2l h9d1a558_3
packaging 16.8 py36ha668100_1
pandas 0.20.3 py36h842e28d_2
pandoc 1.19.2.1 hea2e7c5_1
pandocfilters 1.4.2 py36ha6701b7_1
pango 1.40.11 hedb6d6b_0
partd 0.3.8 py36h36fd896_0
patchelf 0.9 hf79760b_2
path.py 10.3.1 py36he0c6f6d_0
pathlib2 2.3.0 py36h49efa8e_0
patsy 0.4.1 py36ha3be15e_0
pcre 8.41 hc71a17e_0
pep8 1.7.0 py36h26ade29_0
pexpect 4.2.1 py36h3b9d41b_0
pickleshare 0.7.4 py36h63277f8_0
pillow 4.2.1 py36h9119f52_0
pip 9.0.1 py36h30f8307_2
pixman 0.34.0 ha72d70b_1
pkginfo 1.4.1 py36h215d178_1
ply 3.10 py36hed35086_0
prompt_toolkit 1.0.15 py36h17d85b1_0
psutil 5.2.2 py36h74c8701_0
ptyprocess 0.5.2 py36h69acd42_0
py 1.4.34 py36h0712aa3_1
pycodestyle 2.3.1 py36hf609f19_0
pycosat 0.6.2 py36h1a0ea17_1
pycparser 2.18 py36hf9f622e_1
pycrypto 2.6.1 py36h6998063_1
pycurl 7.43.0 py36h5e72054_3
pyflakes 1.5.0 py36h5510808_1
pygments 2.2.0 py36h0d3125c_0
pylint 1.7.2 py36h484ab97_0
pyodbc 4.0.17 py36h999153c_0
pyopenssl 17.2.0 py36h5cc804b_0
pyparsing 2.2.0 py36hee85983_1
pyqt 5.6.0 py36h0386399_5
pysocks 1.6.7 py36hd97a5b1_1
pytables 3.4.2 py36hdce54c9_1
pytest 3.2.1 py36h11ad3bb_1
python 3.6.2 hdfe5801_15
python-dateutil 2.6.1 py36h88d3b88_1
pytz 2017.2 py36hc2ccc2a_1
pywavelets 0.5.2 py36he602eb0_0
pyyaml 3.12 py36hafb9ca4_1
pyzmq 16.0.2 py36h3b0cf96_2
qt 5.6.2 h974d657_12
qtawesome 0.4.4 py36h609ed8c_0
qtconsole 4.3.1 py36h8f73b5b_0
qtpy 1.3.1 py36h3691cc8_0
readline 7.0 hac23ff0_3
requests 2.18.4 py36he2e5f8d_1
rope 0.10.5 py36h1f8c17e_0
ruamel_yaml 0.11.14 py36ha2fb22d_2
scikit-image 0.13.0 py36had3c07a_1
scikit-learn 0.19.0 py36h97ac459_2
scipy 0.19.1 py36h9976243_3
seaborn 0.8.0 py36h197244f_0
setuptools 36.5.0 py36he42e2e1_0
simplegeneric 0.8.1 py36h2cb9092_0
singledispatch 3.4.0.3 py36h7a266c3_0
sip 4.18.1 py36h51ed4ed_2
six 1.10.0 py36hcac75e4_1
snowballstemmer 1.2.1 py36h6febd40_0
sortedcollections 0.5.3 py36h3c761f9_0
sortedcontainers 1.5.7 py36hdf89491_0
sphinx 1.6.3 py36he5f0bdb_0
sphinxcontrib 1.0 py36h6d0f590_1
sphinxcontrib-websupport 1.0.1 py36hb5cb234_1
spyder 3.2.4 py36hbe6152b_0
sqlalchemy 1.1.13 py36hfb5efd7_0
sqlite 3.20.1 h6d8b0f3_1
statsmodels 0.8.0 py36h8533d0b_0
sympy 1.1.1 py36hc6d1c1c_0
tblib 1.3.2 py36h34cf8b6_0
terminado 0.6 py36ha25a19f_0
testpath 0.3.1 py36h8cadb63_0
tk 8.6.7 h5979e9b_1
toolz 0.8.2 py36h81f2dff_0
tornado 4.5.2 py36h1283b2a_0
traitlets 4.3.2 py36h674d592_0
typing 3.6.2 py36h7da032a_0
unicodecsv 0.14.1 py36ha668878_0
unixodbc 2.3.4 hc36303a_1
urllib3 1.22 py36hbe7ace6_0
wcwidth 0.1.7 py36hdf4376a_0
webencodings 0.5.1 py36h800622e_1
werkzeug 0.12.2 py36hc703753_0
wheel 0.29.0 py36he7f4e38_1
widgetsnbextension 3.0.2 py36hd01bb71_1
wrapt 1.10.11 py36h28b7045_0
xlrd 1.1.0 py36h1db9f0c_1
xlsxwriter 0.9.8 py36hf41c223_0
xlwt 1.3.0 py36h7b00a1f_0
xz 5.2.3 h2bcbf08_1
yaml 0.1.7 h96e3832_1
zeromq 4.2.2 hb0b69da_1
zict 0.1.2 py36ha0d441b_0
zlib 1.2.11 hfbfcf68_1
I've got a conda environment for both 2.7 and 3.6
I took the (x) our of xrange for the 3.6 and I'm still getting the same debugging error as I did up top with arrow pointing at the import function. I installed numpy into my conda 3.6 environment using the conda install --spyder2 numpy command.
Posts: 5,151
Threads: 396
Joined: Sep 2016
Oct-24-2017, 01:10 AM
(This post was last modified: Oct-24-2017, 01:10 AM by metulburr.)
Quote:I just used Anaconda because it seemed like it had all the tools I needed.
To be honest i would just use the default python install or install python3.x if you wanted that. Anaconda isnt as used by as many people doing just a base install. All you have to do to install packages to OS python is
pip install package_name1 package_name2 etc.
then just link whatever IDE you want with that python interpreter that you installed those packages to.
Recommended Tutorials:
Posts: 21
Threads: 7
Joined: Oct 2017
Oct-24-2017, 01:57 AM
(This post was last modified: Oct-24-2017, 02:19 AM by BlackHeart.)
(Oct-24-2017, 01:10 AM)metulburr Wrote: Quote:I just used Anaconda because it seemed like it had all the tools I needed.
To be honest i would just use the default python install or install python3.x if you wanted that. Anaconda isnt as used by as many people doing just a base install. All you have to do to install packages to OS python is
pip install package_name1 package_name2 etc.
then just link whatever IDE you want with that python interpreter that you installed those packages to.
I unintalled Anaconda. We'll see if this works a bit smoother. I appreciate all your responses guys.
Hey guys, just wanted to let you know that I got it to work!
metulburr you were totally right on. I got rid of Anaconda, installed pip, and then installed numpy. I decided to use pycharm as my IDE and I was able to specify my projects interpreter. Ran the script and I got an actual output!
Thanks again everyone, you guys are awesome.
|