Python Forum
name error:name 'clf' is not defined
Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
name error:name 'clf' is not defined
#1
Quote:I am working on a project called heart disease predictor.When i click the button predict heart disease.The below error is coming.But clf is defined global.Help me out asap.
Thank you.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
import tkinter #importing tkinter library for GUI creation
from tkinter import *
from PIL import Image, ImageTk
import tkinter.messagebox
from tkinter import filedialog
#import mysql.connector
#from keras.models import Sequential
#from keras.layers import Dense
import pandas as pnd  # importing pandas data analysis toolkit
import numpy as np    # importing numpy library for array operations
from time import time # importing time library for time calculations
from sklearn.model_selection import train_test_split # importing module model_classification from scikit-learn library
print("hello")
    
header_row = ['age', 'sex', 'pain', 'BP', 'chol', 'fbs', 'ecg', 'maxhr','eiang', 'eist', 'slope', 'vessels', 'thal',
              'diagnosis']     # Declaring the header row for getting data from the dataset files
 
 
# filter to only those diagnosed with heart disease
def cardiac():
    global master
    master = Tk()         # Defining the Tkinter widget
    master.wm_title("Heart Disease Prediction")
    master.geometry('1500x600')
    image = Image.open('c3.jpg')
    image = image.resize((1500, 600))
    photo_image = ImageTk.PhotoImage(image)
    label = Label(master, image = photo_image)
    label.place(x=0,y=0)
    import sklearn        # Importing scikit-learn functions
 
    #Lab=Label(master,text=" Automatic Heart Disease Detection ")    # Adding Label to the Tkinter widget
    #Lab.place(x=600,y=50)                           # Packing the label data to the tkinter widget in user defined rows and columns
                                         # Changing dimensions of the Label
 
    #Lab=Label(master,text="")
    #Lab.grid(row=2,column=5,columnspan=2)
 
    #Lab1=Label(master,text="Classification Report")
    #Lab1.place(x=170,y=330)
    #Lab2=Label(master,text="Confusion Matrix")
    #Lab2.place(x=930,y=330)   
    T = Text(master, height=6, width=40,font=("bold",10),highlightthickness=2,bg="white",relief=SUNKEN)                            # Declaring Text Widget for Result Displaying
    T.place(x=55,y=350)
    T1 = Text(master, height=6, width=35,font=("bold",10),highlightthickness=2,bg="white",relief=SUNKEN)
    T1.place(x=1000,y=350)
 
    var = StringVar(master)
    var.set("Select Dataset") # initial value
 
    option = OptionMenu(master, var, "Cleveland", "Hungarian", "VA", "all") # Declaring the OptionMenu (Drop-Down list) widget
    option.config(bg = "violet")
    option.config(fg = "black")
    option.config(font=('algerian',10,'bold'))
    option.config(width=12)
    option.place(x=500,y=80)
 
    '''field1="Age"                                                            # Defining the field names which user has to input for heart disease detection
    field2="Sex"
    field3="Pain"
    field4="BP"
    field5="Chol"
    field6="FBS"
    field7="ECG"
    field8="Maxhr"
    field9="Eiang"
    field10="Eist"
    field11="Slope"
    field12="Vessels"
    field13="Thal"'''
 
 
    '''L1=Label(master,text=field1)
    L1.grid(row = 4, column = 0, sticky='nsew')
    L1.configure(width=14)
    L2=Label(master,text=field2)
    L2.grid(row = 4, column = 1, sticky='nsew')
    L2.configure(width=14)
    L3=Label(master,text=field3)
    L3.grid(row = 4, column = 2, sticky='nsew')
    L3.configure(width=14)
    L4=Label(master,text=field4)
    L4.grid(row = 4, column = 3, sticky='nsew')
    L4.configure(width=14)
    L5=Label(master,text=field5)
    L5.grid(row = 4, column = 4, sticky='nsew')
    L5.configure(width=14)
    L6=Label(master,text=field6, )
    L6.grid(row = 4, column = 5, sticky='nsew')
    L6.configure(width=14)
    L7=Label(master,text=field7)
    L7.grid(row = 4, column = 6, sticky='nsew')
    L7.configure(width=14)
    L8=Label(master,text=field8)
    L8.grid(row = 4, column = 7, sticky='nsew')
    L8.configure(width=14)
    L9=Label(master,text=field9)
    L9.grid(row = 4, column = 8, sticky='nsew')
    L9.configure(width=14)
    L10=Label(master,text=field10)
    L10.grid(row = 4, column = 9, sticky='nsew')
    L10.configure(width=14)
    L11=Label(master,text=field11)
    L11.grid(row = 4, column = 10, sticky='nsew')
    L11.configure(width=14)
    L12=Label(master,text=field12)
    L12.grid(row = 4, column = 11, sticky='nsew')
    L12.configure(width=14)
    L13=Label(master,text=field13)
    L13.grid(row = 4, column = 12, sticky='nsew')
    L13.configure(width=14)'''
 
 
    E1=Entry(master,width=8,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E1.place(x=0, y=220)
 
    E2=Entry(master,width=8,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E2.place(x=90, y=220)
 
    E3=Entry(master,width=8,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E3.place(x=180, y=220)
 
    E4=Entry(master,width=8,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E4.place(x=280, y=220)
 
    E5=Entry(master,width=8,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E5.place(x=370, y=220)
 
    E6=Entry(master,width=8,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E6.place(x=470, y=220)
 
    E7=Entry(master,width=8,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E7.place(x=550, y=220)
 
    E8=Entry(master,width=8,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E8.place(x=650, y=220)
 
    E9=Entry(master,width=10,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E9.place(x=770, y=220)
 
    E10=Entry(master,width=10,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E10.place(x=880, y=220)
 
    E11=Entry(master,width=10,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E11.place(x=980, y=220)
 
    E12=Entry(master,width=10,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E12.place(x=1100, y=220)
 
    E13=Entry(master,width=10,font=("bold",10),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E13.place(x=1220, y=220)
 
    lb1 = Label(master, text="patient",font=('algerian',15,'bold'),fg="BLACK",anchor='w')
    lb1.place(x=0, y=150)
 
    E0=Entry(master,width=10,font=("bold",15),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    E0.place(x=120, y=150)
 
 
 
    '''Labx=Label(master,text="")
    Labx.grid(row=21,column=4,columnspan=4)
    Labx.visible=False'''
 
    #T3 = Text(master, height=2, width=30)                                                       # Declaring Text Widget for Displaying Prediction
    #T3.grid(row=23,column=4, columnspan=4, sticky= 'nsew')
 
    def train_classifier(x_train,x_test,y_train,y_test,string):                         # Declaring the function for training classifiers and classification analysis
        global clf                                                                      # Declaring clf as a Global Variable for using throughot the code
        global outclass
        global a1,a2,a3
        from sklearn.metrics import classification_report
        from sklearn.metrics import confusion_matrix
        T.delete(1.0,END)                                                               # Deleting the text in the Text Widget
        T1.delete(1.0,END)
        if string=="CNN":
            
            from keras.models import Sequential
            from keras.layers import Dense
            import matplotlib.pyplot as plt1
             
            #import pandas as pnd  # importing pandas data analysis toolkit
            #import numpy as np
            t1= time()
              
            clf = Sequential() #initial creation
            clf.add(Dense(13, input_dim=13, init='uniform', activation='relu')) #first hidden layer
            clf.add(Dense(10, init='uniform', activation='relu'))
            #model.add(Dense(8, init='uniform', activation='relu'))
            #model.add(Dense(6, init='uniform', activation='relu'))
            clf.add(Dense(1, init='uniform', activation='sigmoid')) #output layer
 
            # compile the model
            clf.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
 
            # fitting data to model
            clf.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=200, batch_size=5, verbose=0)
 
            # evaluate the model
            scores = clf.evaluate(x_test, y_test)
            #printing accuracy
            print("Accuracy: %.2f%%" % (scores[1]*100))
            #p1=model.predict(Xv)
            #print(p1)
            a1=(scores[1]*100)
 
            T.insert(END, "Accuracy")
            T.insert(END, "  ")
            T.insert(END,(scores[1]*100) )
            y_pred = clf.predict(x_test)
            print(y_pred)
            l1=list()
            for i in y_pred:
                if i<.49:
                    l1.append(0)
                else:
                    l1.append(1)
            print(l1)
 
            count1=y_test.count()
            l2=list(range(1,count1+1,1))
             
 
            print(count1)
            print(y_test.count())
            #print(count(l1))
 
            colormap=np.array(['lime','red'])
            plt1.subplot(1,2,1)
            plt1.scatter(l2,y_test,c=colormap[y_test])
            plt1.suptitle("CNN Algorihm")
            plt1.xlabel("X values")
            plt1.ylabel("y tests values")
            plt1.title("true Values")
 
            plt1.subplot(1,2,2)
            plt1.scatter(l2,l1,c=colormap[l1])
            plt1.suptitle("CNN Algorihm")
            plt1.xlabel("X values")
            plt1.ylabel("Predictions")
            plt1.title("Predictions")
            plt1.show()
             
            # Predict Results for Test Data
            #title = "Learning Curves (SVM)"
            #print(y_train)
            #geterror(x_train,y_train,clf,title);
            t= time()-t1
            T.insert(END, "Accuracy")
            T.insert(END, "  ")
            T.insert(END,(scores[1]*100) )
            print("Training Complete")
         
        elif string=="Naive Bayes":
            from sklearn.naive_bayes import GaussianNB
            import matplotlib.pyplot as plt2
             
            t2=time()
            clf = GaussianNB()                                                          # Initializing the Naive Bayes Classifier
            clf.partial_fit(x_train, y_train, np.unique(y_train))                       # Fitting the classifier to the training and testing the Naive Bayes Classifier
            y_pred = clf.predict(x_test)
            print(y_pred)
            t = time() - t2
            title = "Learning Curves (Naive Bayes)"
 
             
            #geterror(x_train,y_train,clf,title);
            classre=classification_report(y_test,y_pred)                       # Generating Classification Report
            T.insert(END,classre[1:5]+classre[1:32]+classre[1:13]+classre[60:90]+classre[1:11]+classre[1:2]+classre[115:140]+classre[1:7]+classre[161:195]) # Printing Precision and Recall Results
            print(classre)
            confmat=confusion_matrix(y_test,y_pred)                                        # Calculating the Confusion Matrix for the classification
            T1.insert(END, confmat)
            T.insert(END, classre[1:9])
            T.insert(END, "Accuracy")
            T.insert(END, classre[1:5])
            T.insert(END, int(float((y_test==y_pred).sum())/len(y_test.T)*100))
            T.insert(END, "%")
            T.insert(END, classre[1:10]+classre[1:10])
            T.insert(END, "Class. Time")
            T.insert(END, classre[1:8])
            #T.insert(END, t[0:4]+" sec")
            a2=int(float((y_test==y_pred).sum())/len(y_test.T)*100)
         
            
 
            count2=y_test.count()
            l3=list(range(1,count2+1,1))
             
 
            print(count2)
            print(y_test.count())
            #print(count(l1))
 
            colormap=np.array(['lime','red'])
            plt2.subplot(1,2,1)
            plt2.scatter(l3,y_test,c=colormap[y_test])
            plt2.suptitle("Naviee Bayesian Algorihm")
            plt2.xlabel("X values")
            plt2.ylabel("y tests values")
            plt2.title("true Values")
 
            plt2.subplot(1,2,2)
            plt2.scatter(l3,y_pred,c=colormap[y_pred])
            plt2.suptitle("Naviee Bayesian Algorihm")
            plt2.xlabel("X values")
            plt2.ylabel("Predictions")
            plt2.title("Predictions")
            plt2.show()
            print("Training Complete")
             
         
         
        elif string=="K-Nearesr Neighbour":
            from sklearn.neighbors import KNeighborsClassifier
            import matplotlib.pyplot as plt3
            clf = KNeighborsClassifier(n_neighbors=5)
            clf.fit(x_train, y_train)
            y_pred = clf.predict(x_test)
            print(y_pred)
            print(y_test)
            classre=classification_report(y_test,y_pred)                       # Generating Classification Report
            T.insert(END,classre[1:5]+classre[1:32]+classre[1:13]+classre[60:90]+classre[1:11]+classre[1:2]+classre[115:140]+classre[1:7]+classre[161:195]) # Printing Precision and Recall Results
            print(classre)
            confmat=confusion_matrix(y_test,y_pred)                                        # Calculating the Confusion Matrix for the classification
            T1.insert(END, confmat)
            T.insert(END, classre[1:9])
            T.insert(END, "Accuracy")
            T.insert(END, classre[1:5])
            T.insert(END, int(float((y_test==y_pred).sum())/len(y_test.T)*100))
            T.insert(END, "%")
            T.insert(END, classre[1:10]+classre[1:10])
            #T.insert(END, "Class. Time")
            #T.insert(END, classre[1:8])
            #T.insert(END, t[0:4]+" sec")
            a3=int(float((y_test==y_pred).sum())/len(y_test.T)*100)
     
            count3=y_test.count()
            l4=list(range(1,count3+1,1))
             
 
            print(count3)
            print(a1)
            print(a2)
            print(a3)
            #plot_bar_x(a1,a2,a3);
            print(y_test.count())
            #print(count(l1))
 
            colormap=np.array(['lime','red'])
            plt3.subplot(1,2,1)
            plt3.scatter(l4,y_test,c=colormap[y_test])
            plt3.suptitle("K Nearest Neighbour Algorihm")
            plt3.xlabel("X values")
            plt3.ylabel("Y tests values")
            plt3.title("True Values")
 
            plt3.subplot(1,2,2)
            plt3.scatter(l4,y_pred,c=colormap[y_pred])
            plt3.suptitle("K Nearest Neighbour Algorihm")
            plt3.xlabel("X values")
            plt3.ylabel("Predictions")
            plt3.title("Predictions")
            plt3.show()
            #print(a1)
            #print(a2)
            #print(a3)
            plot_bar_x(a1,a2,a3)
            print("Training Complete")
            
 
        '''elif string=="Logistic Regression":
            from sklearn.linear_model import LogisticRegression
            t3=time()
            clf=LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, solver='liblinear', max_iter=100, verbose=0, warm_start=False, n_jobs=1)   # Initializing the Logistic Regression Classifier
            clf.fit(x_train,y_train)
            y_pred = clf.predict(x_test)
            print(y_pred)
            t = time() - t3
            title = "Learning Curves (Logistic Regression)"
           # geterror(x_train,y_train,clf,title);
            print("Training Complete")
 
            t=str(t)'''
        '''print(y_test)
        classre=classification_report(y_test,y_pred)                       # Generating Classification Report
        T.insert(END,classre[1:5]+classre[1:32]+classre[1:13]+classre[60:90]+classre[1:11]+classre[1:2]+classre[115:140]+classre[1:7]+classre[161:195]) # Printing Precision and Recall Results
        print(classre)
        confmat=confusion_matrix(y_test,y_pred)                                        # Calculating the Confusion Matrix for the classification
        T1.insert(END, confmat)
        T.insert(END, classre[1:9])
        T.insert(END, "Accuracy")
        T.insert(END, classre[1:5])
        T.insert(END, int(float((y_test==y_pred).sum())/len(y_test.T)*100))
        T.insert(END, "%")
        T.insert(END, classre[1:10]+classre[1:10])
        T.insert(END, "Class. Time")
        T.insert(END, classre[1:8])
        T.insert(END, t[0:4]+" sec")
        import matplotlib.pyplot as plt'''
         
    def plot_bar_x(a1,a2,a3):
        import matplotlib.pyplot as pltu
        import numpy as np
        print(a1)
        print(a2)
        print(a3)
        label = ['CNN', 'NAIVE BAYESIAN', 'KNN']
        no_movies = [a1,a2,a3]
  
    # this is for plotting purpose
        index = np.arange(len(label))
        pltu.bar(index, no_movies)
        pltu.xlabel('Algorithms', fontsize=15)
        pltu.ylabel('Accuracies', fontsize=15)
        pltu.xticks(index, label, fontsize=15, rotation=30)
        pltu.title('Comparison of different algorithms used')
        pltu.show()
 
    def process_dataset(string):
 
         
     
        if string=="Cleveland":
         
            heart = pnd.read_csv('processed.cleveland.data', names=header_row)          # Reading the dataset file in .data format using Pandas library function read_csv()
            print("Unprocessed Cleveland Dataset")
            print("************************************************************************")
            print(heart.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
 
            import numpy as np
            has_hd_check = heart['diagnosis'] > 0                                                           # Getting the indices of individuals having heart disease
            has_hd_patients = heart[has_hd_check]
            heart['vessels'] = heart['vessels'].apply(lambda vessels: 0.0 if vessels == "?" else vessels)   # Replacing the unknown values in the dataset with float
            heart['vessels'] = heart['vessels'].astype(float)
            heart['thal'] = heart['thal'].apply(lambda thal: 0.0 if thal == "?" else thal)
            heart['thal'] = heart['thal'].astype(float)
            heart['diag_int'] = has_hd_check.astype(int)
 
            ind1 = np.where((heart['diagnosis'] == 1)|(heart['diagnosis'] ==2));
            ind2 = np.where((heart['diagnosis'] == 3)|(heart['diagnosis'] ==4));
 
            temp = heart['diagnosis'];
            temp.ix[ ind1 ] = 1;
            temp.ix[ ind2 ] = 2;
            heart['diagnosis'] = temp;
 
            global x_train
            global y_train
            global x_test
            global y_test
            x_train, x_test, y_train, y_test = train_test_split(heart.loc[:, 'age':'thal'], heart.loc[:, 'diagnosis'],   # Splitting the processed data into training data and testing data
                                                        test_size=0.20, random_state=42)                            # test_size = percent of data used for testing,
                                                                                                                    # random_state = for initializing the random number generator
 
            print("Processed Cleveland Dataset")
            print("************************************************************************")
            print(heart.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
         
 
        elif string=="VA":
 
            import numpy as np
 
 
         
            heart_va = pnd.read_csv('processed.va.data', names=header_row)
            print("Unprocessed VA Dataset")
            print("************************************************************************")
            print(heart_va.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
 
            has_hd_check = heart_va['diagnosis'] > 0
 
         
         
            heart_va['diag_int'] = has_hd_check.astype(int)
            heart_va = heart_va.replace(to_replace='?', value=0.0)
            heart_va['diag_int'] = has_hd_check.astype(int)
         
            ind1 = np.where((heart_va['diagnosis'] == 1)|(heart_va['diagnosis'] ==2));
            ind2 = np.where((heart_va['diagnosis'] == 3)|(heart_va['diagnosis'] ==4));
 
            temp = heart_va['diagnosis'];
            temp.ix[ ind1 ] = 1;
            temp.ix[ ind2 ] = 2;
 
            heart_va['diagnosis'] = temp;
         
            print("Processed VA Dataset")
            print("************************************************************************")
            print(heart_va.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
          
            x_train, x_test, y_train, y_test = train_test_split(heart_va.loc[:, 'age':'thal'], heart_va.loc[:, 'diagnosis'],
                                                        test_size=0.30, random_state=42)
         
        elif string=="Hungarian":
            import numpy as np
            heart_hu = pnd.read_csv('processed.hungarian.data', names=header_row)
            print("Unprocessed Hungarian Dataset")
            print("************************************************************************")
            print(heart_hu.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
 
            has_hd_check = heart_hu['diagnosis'] > 0
            heart_hu['diag_int'] = has_hd_check.astype(int)
            heart_hu = heart_hu.replace(to_replace='?', value=0.0)
 
            ind1 = np.where((heart_hu['diagnosis'] == 1)|(heart_hu['diagnosis'] ==2));
            ind2 = np.where((heart_hu['diagnosis'] == 3)|(heart_hu['diagnosis'] ==4));
 
            temp = heart_hu['diagnosis'];
            temp.ix[ ind1 ] = 1;
            temp.ix[ ind2 ] = 2;
            heart_hu['diagnosis'] = temp;
 
            print("Processed Hungarian Dataset")
            print("************************************************************************")
            print(heart_hu.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
            heart_hu['diag_int'] = has_hd_check.astype(int)
 
         
            x_train, x_test, y_train, y_test = train_test_split(heart_hu.loc[:, 'age':'thal'], heart_hu.loc[:, 'diagnosis'],
                                                        test_size=0.30, random_state=42)
 
        elif string=="all":
            import numpy as np
            heart_cl = pnd.read_csv('processed.cleveland.data', names=header_row)
            print("Unprocessed Cleveland Dataset")
            print("************************************************************************")
            print(heart_cl.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
            has_hd_check = heart_cl['diagnosis'] > 0
            has_hd_patients = heart_cl[has_hd_check]
            heart_cl['diag_int'] = has_hd_check.astype(int)
            heart_cl['vessels'] = heart_cl['vessels'].apply(lambda vessels: 0.0 if vessels == "?" else vessels)
            heart_cl['vessels'] = heart_cl['vessels'].astype(float)
            heart_cl['thal'] = heart_cl['thal'].apply(lambda thal: 0.0 if thal == "?" else thal)
            heart_cl['thal'] = heart_cl['thal'].astype(float)
 
            ind1 = np.where((heart_cl['diagnosis'] == 1)|(heart_cl['diagnosis'] ==2));
            ind2 = np.where((heart_cl['diagnosis'] == 3)|(heart_cl['diagnosis'] ==4));
 
            temp = heart_cl['diagnosis'];
            temp.ix[ ind1 ] = 1;
            temp.ix[ ind2 ] = 2;
            heart_cl['diagnosis'] = temp;
 
            heart_va = pnd.read_csv('processed.va.data', names=header_row)
            print("Unprocessed VA Dataset")
            print("************************************************************************")
            print(heart_va.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
 
            has_hd_check = heart_va['diagnosis'] > 0
            heart_va['diag_int'] = has_hd_check.astype(int)
            heart_va = heart_va.replace(to_replace='?', value=0.0)
 
            ind1 = np.where((heart_va['diagnosis'] == 1)|(heart_va['diagnosis'] ==2));
            ind2 = np.where((heart_va['diagnosis'] == 3)|(heart_va['diagnosis'] ==4));
 
            temp = heart_va['diagnosis'];
            temp.ix[ ind1 ] = 1;
            temp.ix[ ind2 ] = 2;
            heart_va['diagnosis'] = temp;
 
            print("Processed VA Dataset")
            print("************************************************************************")
            print(heart_va.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
 
            heart_hu = pnd.read_csv('processed.hungarian.data', names=header_row)
            print("Unprocessed Hungarian Dataset")
            print("************************************************************************")
            print(heart_hu.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
 
            has_hd_check = heart_hu['diagnosis'] > 0
            heart_hu['diag_int'] = has_hd_check.astype(int)
            heart_hu = heart_hu.replace(to_replace='?', value=0.0)
 
            ind1 = np.where((heart_hu['diagnosis'] == 1)|(heart_hu['diagnosis'] ==2));
            ind2 = np.where((heart_hu['diagnosis'] == 3)|(heart_hu['diagnosis'] ==4));
 
            temp = heart_hu['diagnosis'];
            temp.ix[ ind1 ] = 1;
            temp.ix[ ind2 ] = 2;
            heart_hu['diagnosis'] = temp;
 
            print("Processed Hungarian Dataset")
            print("************************************************************************")
            print(heart_hu.loc[:, 'age':'diagnosis'])
            print("************************************************************************")
 
            x_train1, x_test1, y_train1, y_test1 = train_test_split(heart_cl.loc[:, 'age':'thal'], heart_cl.loc[:, 'diagnosis'],
                                                        test_size=0.30, random_state=42)
            x_train2, x_test2, y_train2, y_test2 = train_test_split(heart_va.loc[:, 'age':'thal'], heart_va.loc[:, 'diagnosis'],
                                                        test_size=0.30, random_state=42)
            x_train3, x_test3, y_train3, y_test3 = train_test_split(heart_hu.loc[:, 'age':'thal'], heart_hu.loc[:, 'diagnosis'],
                                                        test_size=0.30, random_state=42)
 
            # Combining the dataset for Cleveland, VA and Hungarian Dataset
            x_train4= x_train1.append(x_train2);
            x_train = x_train4.append(x_train3);
         
            y_train4 = y_train1.append(y_train2);
            y_train = y_train4.append(y_train3);
 
            x_test4 = x_test1.append(x_test2);
            x_test = x_test4.append(x_test3)
 
            y_test4 = y_test1.append(y_test2);
            y_test = y_test4.append(y_test3);
         
 
    button = Button(master, text="Process Dataset",height=1,fg="black",font=('algerian',13,'bold'),bg="violet",justify='center', command=lambda: process_dataset(var.get())) #Defining the button in the Tkinter Widget
    button.place(x=700,y=80)
 
    var1 = StringVar(master)
    var1.set("Select Classifier") # initial value
 
    option1 = OptionMenu(master, var1, "CNN", "Naive Bayes","K-Nearesr Neighbour")
    option1.place(x=500,y=120)
    option1.config(bg = "violet")
    option1.config(fg = "black")
    option1.config(font=('algerian',10,'bold'))
    option1.config(width=12)
    #option.place ( relx=0.5, rely=0.1)
    button1 = Button(master, text=" Train Classifier",height=1,fg="black",font=('algerian',13,'bold'),bg="violet",justify='center', command=lambda: train_classifier(x_train,x_test,y_train,y_test,var1.get()))
    button1.place(x=700,y=120)
 
 
 
 
    #e1.bind('<Button-1>',e1.delete(0,END))
     
    def predres(clf):                                                                           # Defining function to predict the result from the user input data  
        E14=E10.get()                                                                           # Converting the Eist data according to sign and decimal point
        if len(E14)==3 or len(E14)==4:
            E15=float(E14)
        else:
            E16=E14+'.0'
            E15=float(E16)
         
        test=[float(E1.get()+'.0'),float(E2.get()+'.0'),float(E3.get()+'.0'),float(E4.get()+'.0'),float(E5.get()+'.0'),float(E6.get()+'.0'),float(E7.get()+'.0'),float(E8.get()+'.0'),float(E9.get()+'.0'),E15,float(E11.get()),float(E12.get()+'.0'),float(E13.get()+'.0')]
        test=np.reshape(test,(1,-1))
        #print(test)
        print(clf)
        print(clf.predict(test))
        if clf.predict(test) < 0.49:
            res="The Person does not have heart Disease"
            Labx1=Label(master,text="The Person does not have heart Disease", bg='green')
            Labx1.visible=False
            Labx1.place(x=600,y=430)
            Labx1.visible=True
            #T3.insert(END,"The Person has Heart Disease")
 
        elif clf.predict(test) == 2:
            res="The Person has Severe heart Disease"
            Labx1=Label(master,text="The Person has Severe heart Disease", bg='red')
            Labx1.visible=False
            Labx1.place(x=600,y=430)
            Labx1.visible=True
         
        else:
            res="The Person has heart Disease"
            Labx1=Label(master,text="The Person has heart Disease           ", bg='red')
            Labx1.visible=False
            Labx1.place(x=600,y=430)
            Labx1.visible=True
        #T3.insert(END,"The Person does not have Heart Disease")
         
        age= E1.get()
        sex = E2.get()
        pai= E3.get()
        bp= E4.get()
        chol = E5.get()
        fbs = E6.get()
        ecg = E7.get()
        maxhr = E8.get()
        eiang = E9.get()
        eist = E10.get()
        slope = E11.get()
        vessels = E12.get()
        thal = E13.get()
        pana=E0.get()
 
        aa = mysql.connector.connect(host='localhost', port=3306, user="root", passwd="root", db="cardiac")
        mm = aa.cursor()
         
        mm.execute("""INSERT INTO cardiac1 VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)""", (age,sex,pai,bp,chol,fbs,ecg,maxhr,eiang,eist,slope,vessels,thal,pana,res))
        aa.commit()
        #con.close()
    def geterror(x_train,y_train,clf,title):
        #global clf  
        #global outclass
        import matplotlib.pyplot as plt
        from sklearn.model_selection import learning_curve
        from sklearn.model_selection import ShuffleSplit
        clas=[];
     
        def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                        n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
            plt.figure()
            plt.title(title)
            if ylim is not None:
                plt.ylim(*ylim)
            plt.xlabel("Training examples")
            plt.ylabel("Score")
            train_sizes, train_scores, test_scores = learning_curve(
                estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
            train_scores_mean = np.mean(train_scores, axis=1)
            train_scores_std = np.std(train_scores, axis=1)
            test_scores_mean = np.mean(test_scores, axis=1)
            test_scores_std = np.std(test_scores, axis=1)
            plt.grid()
 
            plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                train_scores_mean + train_scores_std, alpha=0.1,
                color="r")
            plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                test_scores_mean + test_scores_std, alpha=0.1, color="g")
            plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training score")
            plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
                 label="Cross-validation score")
 
            plt.legend(loc="best")
            plt.axis([ 0,len(y),0,1.1])
            return plt
 
     
        for index in range(len(y_train)):
            #x_train1=np.reshape(x_train.iloc[index:],(1,-1));
            x_train1=x_train.iloc[index].values.reshape(1,-1);
            outclass = clf.predict(x_train1);
            clas.append(outclass[0]);
         
        ind3 = np.where((clas == y_train));
        ind4 = np.where((clas != y_train));
        l=0
        m=0
     
        cv = ShuffleSplit(n_splits=4, test_size=0.2, random_state=0)
     
        plot_learning_curve(clf, title, x_train, y_train, (0.7, 1.01), cv=cv, n_jobs=1)
     
        plt.show()
         
     
     
    button2 = Button(master, text=" Predict Heart Disease ",width=20,height=1,fg="black",font=('algerian',13,'bold'),bg="violet",justify='center',command=lambda:predres(clf))
    button2.place(x=600,y=300)
    btn6=Button(master,text="LOGOUT",width=8,height=1,fg="black",font=('algerian',15,'bold'),bg="SKYBLUE",justify='center',command=cardes)
    btn6.place(x=1100,y=80)
    #button2.configure(width=14)
    #button1.place(relx=0.1,rely=0.2)
 
    master.mainloop()
 
 
def adminlogin():
    def adminlogininto():
        usernames = e1.get()
        passwords = e2.get()
        if e1.get() == "" or e2.get() == "":
            tkinter.messagebox.showinfo("sorry","Please complete the required field")
        elif e1.get() == "admin" and e2.get() == "admin":
            #tkMessageBox.showinfo("yeh","logged in")
            admindes()
        else:
            tkinter.messagebox.showinfo("Sorry" , "Wrong Password")
    global window1
    window1=Tk()
    window1.title("LOGIN PAGE")
     
    window1.geometry('700x500')
    image = Image.open('photo.png')
    image = image.resize((700, 600))
    photo_image = ImageTk.PhotoImage(image)
    label = Label(window1, image = photo_image)
    label.place(x=0,y=0)
     
    '''lb1=Label(window1,text="USERNAME",font=('algerian',25,'bold'),fg="BLACK",anchor='w')
    lb1.place(x=150,y=400)'''
 
    e1=Entry(window1,width=10,font=("bold",17),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    e1.place(x=250,y=150)
 
    '''lb2=Label(window1,text="PASSWORD",font=('algerian',25,'bold'),fg="BLACK",anchor='w')
    lb2.place(x=150,y=450)'''
 
    e2=Entry(window1,width=10,show="*",font=("bold",17),highlightthickness=2,bg="WHITE",relief=SUNKEN)
    e2.place(x=250,y=200)
 
    btn6=Button(window1,text="LOGIN",width=8,height=1,fg="black",font=('algerian',15,'bold'),bg="SKYBLUE",justify='center',command=adminlogininto)
    btn6.place(x=270,y=300)
 
    window1.mainloop()
 
def admindes():
    window1.destroy()
    cardiac()
 
def cardes():
    master.destroy()
    adminlogin()
     
if __name__ == "__main__":
    adminlogin()
Error:
Exception in Tkinter callback Traceback (most recent call last): File "C:\Users\Dell\AppData\Local\Programs\Python\Python37\lib\tkinter\__init__.py", line 1705, in __call__ return self.func(*args) File "C:\Users\Dell\Desktop\finalproject\heartfinal.py", line 755, in <lambda> button2 = Button(master, text=" Predict Heart Disease ",width=20,height=1,fg="black",font=('algerian',13,'bold'),bg="violet",justify='center',command=lambda:predres(clf)) NameError: name 'clf' is not defined
Reply
#2
Global are a bad idea in general and this is part of why. Clf may be a global, but since you have a parameter called calf 100 lines higher a different clf is created. So it is a scope problem, as is common when working with global.
Reply
#3
(Mar-31-2020, 08:14 AM)jefsummers Wrote: Global are a bad idea in general and this is part of why. Clf may be a global, but since you have a parameter called calf 100 lines higher a different clf is created. So it is a scope problem, as is common when working with global.
Thank you sir......so wat shld i do to solve dis
Reply
#4
Two options, either one will require you to go through your code in some detail.
1. Don't use clf as a global. That's what I would prefer. Pass it as a parameter when needed and return it when needed.
2. Use clf as a global and get rid of it in all function calls. If it is global it does not need to be passed.

To see some of the issues you can fall into with globals, look at the following code
1
2
3
4
5
6
7
global clf
clf = 1
def fnc():
    clf = 3
    print(clf)
fnc()
print(clf)
Output:
3 1
So how can clf be 3 inside the function but 1 outside?
Fix is to do this:
1
2
3
4
5
6
7
8
global clf
clf = 1
def fnc():
    global clf
    clf = 3
    print(clf)
fnc()
print(clf)
Output:
3 3
Now changing clf inside the function changes it outside the function.
That is SOOO prone to mistakes that are hard to find and code that is difficult to maintain. Which is why you need to go through your code and fix the globals one way or another.
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Variable is not defined error when trying to use my custom function code fnafgamer239 4 1,602 Nov-23-2023, 02:53 PM
Last Post: rob101
  [variable] is not defined error arises despite variable being defined TheTypicalDoge 4 3,595 Apr-05-2022, 04:55 AM
Last Post: deanhystad
  Error 'Contour' not Defined DaveG 3 3,794 Mar-13-2022, 03:29 AM
Last Post: deanhystad
  Getting "name 'get_weather' is not defined error and no json_data returned? trthskr4 6 5,240 Sep-14-2021, 09:55 AM
Last Post: trthskr4
  Error when refering to class defined in 'main' in an imported module HeRo 2 3,253 Apr-13-2021, 07:22 PM
Last Post: HeRo
  Why does lambda throw 'name value_o is not defined' error? karabakh 3 3,198 Dec-14-2020, 05:45 PM
Last Post: karabakh
  name error "name"is not defined MaartenRo 1 5,162 Jul-28-2020, 02:39 AM
Last Post: bowlofred
  Name Error: name 'Stockton' is not defined Pinokchu 3 3,050 Jun-13-2020, 02:48 PM
Last Post: Yoriz
  python library not defined in user defined function johnEmScott 2 5,031 May-30-2020, 04:14 AM
Last Post: DT2000
  error ,,name append is not defined'' Killdoz 1 6,113 May-24-2020, 06:23 PM
Last Post: bowlofred

Forum Jump:

User Panel Messages

Announcements
Announcement #1 8/1/2020
Announcement #2 8/2/2020
Announcement #3 8/6/2020