Posts: 17
Threads: 4
Joined: Apr 2020
Apr-07-2020, 08:48 PM
(This post was last modified: Apr-07-2020, 08:48 PM by cherry_cherry.)
Hi everyone,
I want to sort by 'name' value, by 'notes' values and by average 'notes' values in a dictionary. I tried different methods but it didn't work. I have searched for a solution on google but there's no solution that works. I hope you will help me.
This's my code I'm trying a sort by 'name'.
dico_nouveau = {'20202020': {'name': 'Durand', 'first': 'Martin', 'notes': [15, 15.5, 8, 13]}, '21212121': {'name': 'Dupond', 'first': 'Alain', 'notes': [11, 9.5, 5.5, 18]}, '28790020': {'name': 'Férien', 'first': 'Mélissa', 'notes': [13, 19.5, 15, 8]}, '20212021': {'name': 'Bosse', 'first': 'Mélissa', 'notes': [13, 19.5, 15, 8]}, '21202120': {'name': 'Allard', 'first': 'Chloé', 'notes': [11, 9.5, 2, 17]}, '29019022': {'name': 'Durand', 'first': 'Alan', 'notes': [12, 15.5, 8, 13]}}
for e in sorted(dico_nouveau.items(), key = lambda x : (x[1].values())): print(e,"-", tuple(dico_nouveau[e].values()))
Posts: 1,583
Threads: 3
Joined: Mar 2020
I'm not sure I understand what you're trying to do. Do you want 3 different sorts, or one sort that has preferential keys? And what information do you want to return. Do you need the initial keys or just the value objects?
This returns the keys and the names of dict in 'name' order
>>> [(k, v['name']) for k,v in sorted(dico_nouveau.items(), key=lambda x: x[1]['name'])]
[('21212121', 'Dupond'), ('20202020', 'Durand'), ('28790020', 'Férien')] or to just return all the dictionary objects in 'name' order:
>>> sorted(dico_nouveau.values(), key=lambda v: v['name'])
[{'name': 'Dupond', 'first': 'Alain', 'notes': [11, 9.5, 5.5, 18]}, {'name': 'Durand', 'first': 'Martin', 'notes': [15, 15.5, 8, 13]}, {'name': 'Férien', 'first': 'Mélissa', 'notes': [13, 19.5, 15, 8]}]
Posts: 6,778
Threads: 20
Joined: Feb 2020
Stick with functions until you have things working, then you can try converting to a lambda. For something like this I see no reason to use lambdas at all.
import statistics
dico_nouveau = {
'20202020': {'name': 'Durand', 'first': 'Martin', 'notes': [15, 15.5, 8, 13]},
'21212121': {'name': 'Dupond', 'first': 'Alain', 'notes': [11, 9.5, 5.5, 18]},
'28790020': {'name': 'Férien', 'first': 'Mélissa', 'notes': [13, 19.5, 15, 8]},
'20212021': {'name': 'Bosse', 'first': 'Mélissa', 'notes': [13, 19.5, 15, 8]},
'21202120': {'name': 'Allard', 'first': 'Chloé', 'notes': [11, 9.5, 2, 17]},
'29019022': {'name': 'Durand', 'first': 'Alan', 'notes': [12, 15.5, 8, 13]}}
def name(d):
return d['name'].lower() + d['first'].lower()
def notes(d):
return statistics.mean(d['notes'])
print('Sort by name')
for e in sorted(dico_nouveau.values(), key=name):
print(e['name'], e['first'], sep=', ')
print('\nSort by average notes')
for e in sorted(dico_nouveau.values(), key=notes):
print(e['name'], e['first'], sep=', ')
print('\nBy first name using lambda')
for e in sorted(dico_nouveau.values(),
key=lambda d: d['first'].lower() + d['name'].lower()):
print(e['first'], e['name']) Output: Sort by name
Allard, Chloé
Bosse, Mélissa
Dupond, Alain
Durand, Alan
Durand, Martin
Férien, Mélissa
Sort by average notes
Allard, Chloé
Dupond, Alain
Durand, Alan
Durand, Martin
Férien, Mélissa
Bosse, Mélissa
By first name using lambda
Alain Dupond
Alan Durand
Chloé Allard
Martin Durand
Mélissa Bosse
Mélissa Férien
Posts: 17
Threads: 4
Joined: Apr 2020
Apr-08-2020, 11:23 AM
(This post was last modified: Apr-08-2020, 11:38 AM by cherry_cherry.)
(Apr-07-2020, 09:57 PM)bowlofred Wrote: sorted(dico_nouveau.values(), key=lambda v: v['name'])
Thank you for reply!
I want 3 different sorts and the information output include the initial key and a sort like this:
Output: 202020 - 'Dupond','Alain', [11, 9.5, 5.5, 18]
and with a sort by average 'notes' values I also want to return the average value.
Output: 202020 - 'Dupond','Alain', [11, 9.5, 5.5, 18] - 14.8
(Apr-07-2020, 10:07 PM)deanhystad Wrote: Stick with functions until you have things working, then you can try converting to a lambda. For something like this I see no reason to use lambdas at all.
import statistics
dico_nouveau = {
'20202020': {'name': 'Durand', 'first': 'Martin', 'notes': [15, 15.5, 8, 13]},
'21212121': {'name': 'Dupond', 'first': 'Alain', 'notes': [11, 9.5, 5.5, 18]},
'28790020': {'name': 'Férien', 'first': 'Mélissa', 'notes': [13, 19.5, 15, 8]},
'20212021': {'name': 'Bosse', 'first': 'Mélissa', 'notes': [13, 19.5, 15, 8]},
'21202120': {'name': 'Allard', 'first': 'Chloé', 'notes': [11, 9.5, 2, 17]},
'29019022': {'name': 'Durand', 'first': 'Alan', 'notes': [12, 15.5, 8, 13]}}
def name(d):
return d['name'].lower() + d['first'].lower()
def notes(d):
return statistics.mean(d['notes'])
print('Sort by name')
for e in sorted(dico_nouveau.values(), key=name):
print(e['name'], e['first'], sep=', ')
print('\nSort by average notes')
for e in sorted(dico_nouveau.values(), key=notes):
print(e['name'], e['first'], sep=', ')
print('\nBy first name using lambda')
for e in sorted(dico_nouveau.values(),
key=lambda d: d['first'].lower() + d['name'].lower()):
print(e['first'], e['name']) Output: Sort by name
Allard, Chloé
Bosse, Mélissa
Dupond, Alain
Durand, Alan
Durand, Martin
Férien, Mélissa
Sort by average notes
Allard, Chloé
Dupond, Alain
Durand, Alan
Durand, Martin
Férien, Mélissa
Bosse, Mélissa
By first name using lambda
Alain Dupond
Alan Durand
Chloé Allard
Martin Durand
Mélissa Bosse
Mélissa Férien
Thank you so much!
If I want the information to return include the key, how can I write?
Output like this:
Output: 212121 - Dupond', 'Alain', [11, 9.5, 5.5, 18]
202020 - 'Durand', 'Martin', [15, 15.5, 8, 13]
with average:
202020 - 'Dupond','Alain', [11, 9.5, 5.5, 18] - 14.8
Posts: 1,950
Threads: 8
Joined: Jun 2018
I am trying to understand - is output to screen required(not object bound to name)? If not output then what datatype it is?
I'm not 'in'-sane. Indeed, I am so far 'out' of sane that you appear a tiny blip on the distant coast of sanity. Bucky Katt, Get Fuzzy
Da Bishop: There's a dead bishop on the landing. I don't know who keeps bringing them in here. ....but society is to blame.
|