Posts: 21
Threads: 4
Joined: Feb 2021
The below Yahoo_fin script exports 59 stock stats for each ticker to csv. The program is working fine.
import pandas as pd
from yahoo_fin import stock_info as si
import glob
stock_list = "MSFT", "AAPL"
stats = {}
for ticker in stock_list:
data2 = si.get_stats(ticker)
data2 = data2.iloc[:,:2]
data2.columns = ["Attribute", "Recent"]
stats[ticker] = data2
combined2 = pd.concat(stats)
combined2 = combined2.reset_index()
del combined2["level_1"]
combined2.columns = ["Ticker", "Attribute", "Recent"]
df = pd.DataFrame(combined2)
df2 = df.drop_duplicates(subset=None, keep="first", inplace=False)
df2.to_csv(r'stats.csv') The csv output file looks as follows:
Output: Ticker Attribute Recent
0 MSFT Market Cap 1.84T
1 MSFT Enterprise Value 1.78T
.
.
58 MSFT Free Cash Flow 34.79B
59 AAPL Market Cap 2.27T
60 AAPL Enterprise Value 2.31T
.
.
117 AAPL Free Cash Flow 66.89B
Is there are a way to modified the yahoo_fin script so that the output looks like below instead?
Output: Ticker Market Cap Enterprise Value .. Free Cash Flow
MSFT 1.84T 1.78T 34.79B
AAPL 2.27T 2.31T 66.89B
Posts: 8,167
Threads: 160
Joined: Sep 2016
You can use pandas.DataFrame.pivot()
import pandas as pd
df = pd.read_csv('test.csv')
print(df)
print('--------------')
df2 = df.pivot(index='Ticker', columns='Attribute', values='Recent')
print(df2)
df2.to_csv('test2.csv') output
Output: Ticker Attribute Recent
0 MSFT Market Cap 1.84T
1 MSFT Enterprise Value 1.78T
2 MSFT Free Cash Flow 34.79B
3 AAPL Market Cap 2.27T
4 AAPL Enterprise Value 2.31T
5 AAPL Free Cash Flow 66.89B
--------------
Attribute Enterprise Value Free Cash Flow Market Cap
Ticker
AAPL 2.31T 66.89B 2.27T
MSFT 1.78T 34.79B 1.84T
test2.csv
Output: Ticker,Enterprise Value,Free Cash Flow,Market Cap
AAPL,2.31T,66.89B,2.27T
MSFT,1.78T,34.79B,1.84T
Posts: 21
Threads: 4
Joined: Feb 2021
Feb-12-2021, 11:47 AM
(This post was last modified: Feb-12-2021, 11:47 AM by detlefschmitt.)
yes, that works! Thanks. I added the pivot line to my script. The question asked in this post is solved.
import pandas as pd
from yahoo_fin import stock_info as si
stock_list = "AAPL", "MSFT"
stats = {}
for ticker in stock_list:
data = si.get_stats(ticker)
stats[ticker] = data
combined = pd.concat(stats)
combined = combined.reset_index()
del combined["level_1"]
combined.columns = ["Ticker", "Attribute", "Recent"]
df = pd.DataFrame(combined)
df2 = df.pivot(index='Ticker', columns='Attribute', values='Recent')
df2.to_csv(r'stats.csv')
Posts: 21
Threads: 4
Joined: Feb 2021
Feb-13-2021, 07:51 AM
(This post was last modified: Feb-14-2021, 05:44 AM by detlefschmitt.)
To make the program more useful I added a few functions. I added importing ticker symbols from a csv file, deleting unwanted columns, renaming columns and changing the columns order. The program in this example imports the csv file column with the header name "Ticker". How to create a csv file containing e.g. the ticker symbols from the NASDAQ can be found in this post.
The program worked fine with about 350 stocks at once. However, running this program several times with that many tickers in a short time can cause a "HTTPError: Service Unavailable" type error. Also make sure that all data is retrieved. It happened to me that data in a couple columns was missing one time. The next morning then the program again was able to get all data. So, if you run into such a problem, it is not caused by an error in the program. It is an error related to retrieving the information from the website. A website access problem.
import pandas as pd
from yahoo_fin import stock_info as si
import glob
ti = pd.read_csv('TickerList.csv')
ti2 = ti["Ticker"].tolist()
stock_list = ti2
stats = {}
for ticker in stock_list:
data = si.get_stats(ticker)
stats[ticker] = data
combined = pd.concat(stats)
combined = combined.reset_index()
del combined["level_1"]
combined.columns = ["Ticker", "Attribute", "Recent"]
df = pd.DataFrame(combined)
df2 = df.pivot(index='Ticker', columns='Attribute', values='Recent')
cols = [3,7,12,13,14,17,18,19,20,22,23,24,25,26,27,28,30,31,32,33,34,35,38,39,41,43,45,49,51,56,57,58]
df2.drop(df2.columns[cols],axis=1,inplace=True)
df2.rename(columns={ df2.columns[0]: "% Insider" }, inplace = True)
df2.rename(columns={ df2.columns[1]: "% Institution" }, inplace = True)
df2.rename(columns={ df2.columns[2]: "200-Day MA" }, inplace = True)
df2.rename(columns={ df2.columns[3]: "50-Day MA" }, inplace = True)
df2.rename(columns={ df2.columns[4]: "52-Week H" }, inplace = True)
df2.rename(columns={ df2.columns[5]: "52-Week L" }, inplace = True)
df2.rename(columns={ df2.columns[6]: "Avg Vol 10D" }, inplace = True)
df2.rename(columns={ df2.columns[7]: "Avg Vol 3M" }, inplace = True)
df2.rename(columns={ df2.columns[8]: "Beta" }, inplace = True)
df2.rename(columns={ df2.columns[9]: "Book/Share" }, inplace = True)
df2.rename(columns={ df2.columns[10]: "EBITDA" }, inplace = True)
df2.rename(columns={ df2.columns[11]: "Enterprice V" }, inplace = True)
df2.rename(columns={ df2.columns[12]: "Float" }, inplace = True)
df2.rename(columns={ df2.columns[13]: "Market Cap" }, inplace = True)
df2.rename(columns={ df2.columns[14]: "Price/Book" }, inplace = True)
df2.rename(columns={ df2.columns[15]: "Price/Sales" }, inplace = True)
df2.rename(columns={ df2.columns[16]: "Q Rev (YOY)" }, inplace = True)
df2.rename(columns={ df2.columns[17]: "Return on Equity" }, inplace = True)
df2.rename(columns={ df2.columns[18]: "Revenue/Share" }, inplace = True)
df2.rename(columns={ df2.columns[19]: "Shares" }, inplace = True)
df2.rename(columns={ df2.columns[20]: "Shares Short" }, inplace = True)
df2.rename(columns={ df2.columns[21]: "Short prior" }, inplace = True)
df2.rename(columns={ df2.columns[22]: "% Short" }, inplace = True)
df2.rename(columns={ df2.columns[23]: "Cash" }, inplace = True)
df2.rename(columns={ df2.columns[24]: "Cash/Share" }, inplace = True)
df2.rename(columns={ df2.columns[25]: "Debt" }, inplace = True)
df2.rename(columns={ df2.columns[26]: "Debt/Equity" }, inplace = True)
order = [13,11,15,14,8,4,5,3,2,7,6,19,12,0,1,20,22,21,17,18,16,10,23,24,25,26,9]
df3 = df2[[df2.columns[i] for i in order]]
df3.to_csv(r'stats.csv')
Posts: 21
Threads: 4
Joined: Feb 2021
Feb-13-2021, 08:04 AM
(This post was last modified: Feb-15-2021, 05:55 AM by detlefschmitt.)
As alternative to reading the csv with python one can use an Excel VBA to convert an Excel column containing ticker symbols to a string that can then be pasted into the python code. The Excel VBA code is posted below.
Instructions for the Excel VBA: Put your tickers in column A starting in cell A1. Then execute the macro. The ticker string will be placed in cell B1.
How to export the tickers using python you can find here.
Sub CombineTickersWithQuotationMark()
Application.ScreenUpdating = False
Dim i As Long
Dim LastRowA As Long
LastRowA = Range("A" & Rows.Count).End(xlUp).Row
For i = 1 To LastRowA - 1
Cells(1, 2) = Cells(1, 2) & """" & Cells(i, 1) & """, "
Next i
Cells(1, 2) = Cells(1, 2) & """" & Cells(LastRowA, 1) & """"
Application.ScreenUpdating = True
End Sub
Posts: 8,167
Threads: 160
Joined: Sep 2016
why not learn how to read from a file, e.g. csv/text file with all tickers. instead of constructing a big literal.
And, please, make an effort first. You can read it in number of ways, incl. pandas obviously
Posts: 21
Threads: 4
Joined: Feb 2021
Feb-13-2021, 08:54 AM
(This post was last modified: Feb-14-2021, 02:49 AM by detlefschmitt.)
removed due to too personal
Posts: 8,167
Threads: 160
Joined: Sep 2016
Feb-13-2021, 09:30 AM
(This post was last modified: Feb-13-2021, 09:30 AM by buran.)
I've been working with VBA/Office automation for years. Almost never looked back after I started with python. And you already know how to read data from a file into pandas dataframe and loop over it - what's the problem to read a list of tickers from cav or excel? Basically there is no learning here.
On a broader scale - isn't it better to store data in a DB and then connect from Excel, either with Power Query or VBA/ADODB if you prefer to manipulate your data in Excel?
Posts: 21
Threads: 4
Joined: Feb 2021
Feb-14-2021, 05:38 AM
(This post was last modified: Feb-15-2021, 05:56 AM by detlefschmitt.)
This is the same code as posted above.
import pandas as pd
from yahoo_fin import stock_info as si
import glob
ti = pd.read_csv('TickerList.csv')
ti2 = ti["Ticker"].tolist()
stock_list = ti2
stats = {}
for ticker in stock_list:
data = si.get_stats(ticker)
stats[ticker] = data
combined = pd.concat(stats)
combined = combined.reset_index()
del combined["level_1"]
combined.columns = ["Ticker", "Attribute", "Recent"]
df = pd.DataFrame(combined)
df2 = df.pivot(index='Ticker', columns='Attribute', values='Recent')
cols = [3,7,12,13,14,17,18,19,20,22,23,24,25,26,27,28,30,31,32,33,34,35,38,39,41,43,45,49,51,56,57,58]
df2.drop(df2.columns[cols],axis=1,inplace=True)
df2.rename(columns={ df2.columns[0]: "% Insider" }, inplace = True)
df2.rename(columns={ df2.columns[1]: "% Institution" }, inplace = True)
df2.rename(columns={ df2.columns[2]: "200-Day MA" }, inplace = True)
df2.rename(columns={ df2.columns[3]: "50-Day MA" }, inplace = True)
df2.rename(columns={ df2.columns[4]: "52-Week H" }, inplace = True)
df2.rename(columns={ df2.columns[5]: "52-Week L" }, inplace = True)
df2.rename(columns={ df2.columns[6]: "Avg Vol 10D" }, inplace = True)
df2.rename(columns={ df2.columns[7]: "Avg Vol 3M" }, inplace = True)
df2.rename(columns={ df2.columns[8]: "Beta" }, inplace = True)
df2.rename(columns={ df2.columns[9]: "Book/Share" }, inplace = True)
df2.rename(columns={ df2.columns[10]: "EBITDA" }, inplace = True)
df2.rename(columns={ df2.columns[11]: "Enterprice V" }, inplace = True)
df2.rename(columns={ df2.columns[12]: "Float" }, inplace = True)
df2.rename(columns={ df2.columns[13]: "Market Cap" }, inplace = True)
df2.rename(columns={ df2.columns[14]: "Price/Book" }, inplace = True)
df2.rename(columns={ df2.columns[15]: "Price/Sales" }, inplace = True)
df2.rename(columns={ df2.columns[16]: "Q Rev (YOY)" }, inplace = True)
df2.rename(columns={ df2.columns[17]: "Return on Equity" }, inplace = True)
df2.rename(columns={ df2.columns[18]: "Revenue/Share" }, inplace = True)
df2.rename(columns={ df2.columns[19]: "Shares" }, inplace = True)
df2.rename(columns={ df2.columns[20]: "Shares Short" }, inplace = True)
df2.rename(columns={ df2.columns[21]: "Short prior" }, inplace = True)
df2.rename(columns={ df2.columns[22]: "% Short" }, inplace = True)
df2.rename(columns={ df2.columns[23]: "Cash" }, inplace = True)
df2.rename(columns={ df2.columns[24]: "Cash/Share" }, inplace = True)
df2.rename(columns={ df2.columns[25]: "Debt" }, inplace = True)
df2.rename(columns={ df2.columns[26]: "Debt/Equity" }, inplace = True)
order = [13,11,15,14,8,4,5,3,2,7,6,19,12,0,1,20,22,21,17,18,16,10,23,24,25,26,9]
df3 = df2[[df2.columns[i] for i in order]]
df3.to_csv(r'stats.csv')
Posts: 8,167
Threads: 160
Joined: Sep 2016
Please, don't remove post content, especially after conversation went and you get advise. I deleted one post that you marked as too personal and left the other with content removed, so that it's clear how the conversation went. However I reverted the 2 posts that have code published.
|