Aug-06-2021, 09:28 PM
I am establishing a multilayer perceptron neural network. Each layer has random number of perceptron. In order to connect perceptrons from
one layer to another one, I need to pick random number of perceptrons. The code is below. But the error message I get is
>>
Here is the code
one layer to another one, I need to pick random number of perceptrons. The code is below. But the error message I get is
>>
Error:TypeError: Population must be a sequence. For dicts or sets, use sorted(d).
<<Here is the code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import numpy as np import random class MultiLayer_test(): def __init__( self ): self .H_LayerNo = 5 self .MaxPercNo = 10 # Assume that we only generate 10 perceptron on each layer def main_Layering( self ): PercNo = [] Layers = [] Ex_N = [] #IndexCh = [] for i in range ( 0 , self .H_LayerNo): # Number of perceptrons per layer PercNo.append(random.randint( 1 , self .MaxPercNo)) # Create tuples representing the layers Layers.append([np.zeros(( 1 , PercNo[i]))]) #[np.zeros((1, PercNo[i]))] [random.random(PercNo[i])] # Number of transmitters per layer Ex_N.append(random.randint( 1 , PercNo[i])) #PercNo[i] # Get the indices of excited neurons Idx[i] = random.sample(np.asarray(Layers[i]),Ex_N[i]) if __name__ = = '__main__' : runner = MultiLayer_test() runner.main_Layering() |